04fc7651a3c844 Engineering Mathematics II 01 Text pages

UNIT – I Fourier Series: Introduction to Fourier series, Fourier series for Discontinuous functions, Fourier series for ...

0 downloads 203 Views 217KB Size
UNIT – I Fourier Series: Introduction to Fourier series, Fourier series for Discontinuous functions, Fourier series for even and odd function, Half range series Fourier Transform: Definition and properties of Fourier transform, Sine and Cosine transform

CHAPTER 1

Fourier Series

Introduction: In many physical and engineering problems, especially in the study of periodic function, it is necessary to express a real valued function in series of sines and cosines, which can be expressed in the form.

a0  a1 cos x  a2 cos 2 x  ......  b1 sin x  b2 sin 2 x  ...... 2 where

a0 , a1 , a2 ,.... and b1 , b2 ,.... are some constants.

Periodic functions: A function f  x  is said to be periodic if f  x  l   f  x  , x being a real number. If l is the least positive number called the period of the function f  x . For example: sinx, cos x,sec x, cos ecx is a periodic function with period 2 . Also, sin nx, cos nx are periodic function with period

2 . n

Trigonometric Series: A series of the form 

a0    an cos nx  bn sin nx  n 1

is called a trigonometric series. Some useful Definite Integrals: Let m and n be any two integers and the interval  c, c  2  . Then the following definite integrals are as follows: 3

4

Engineering Mathematics - II   2

(i)



(ii)



(iii)

(iv)

  2

  2



  2



  2

(v) (vi) (vii)

(viii) (ix) (x) (xi)

  2

 cos nx  sin nx dx    n  

 0, n  0

cos nx dx  0, n  0   2

1  sin  m  n  x sin  m  n  x  sin mx sin nx dx     2 mn mn 

 0, m  n

  2

1  sin  m  n  x sin  m  n  x  cos mx cos nx dx     2 mn mn 

 0, m  n

1   2 1  cos 2nx  dx   , n  0  2    2 1   2 2 cos nx dx  1  cos 2nx  dx   , n  0  2    2   2 1  cos  m  n  x cos  m  n  x   sin mx cos nx dx  2  m  n  m  n   0, m  n  sin 2 nx dx 

  2

 sin 2 nx   sin nx cos nx dx   2n   0, n  0  ax e ax  e sin bx dx  a 2  b2  a sin bx  b cos bx  e ax ax e bx dx  cos  a cos bx  b sin bx   a 2  b2 n sin n  0 and cos n   1 , n  N .   2

Fourier Series: The Fourier Series for the function f  x  in the interval  ,   2  is given by

f  x 

a0     an cos nx  bn sin nx  2 n 1

where

a0 

1

  2

 

f  x  dx

Fourier Series

and

an 

1

 

  2

f  x  cos nx dx

bn 

1

  2

f  x  sin nx dx

 

5

The values of a0 , an , bn are known as Euler’s Coefficients or Fourier Coefficients. Proof: Let f  x  be represented in the interval  ,   2  by the Fourier Series: 

f  x   a0    an cos nx  bn sin nx 

…..(i)

n 1

To find the coefficients a0 , an , bn . We assume that equation (i) can be integrated term

by term in the given interval  ,   2  .

To find a0 : integrated both sides of (i), we get   2

f  x  dx 



a0 2

  2



dx  

  2



  2       a cos nx dx bn sin nx  dx    n      n 1   n 1 

a0   2     0  0 2  a0 . 

Hence a0 

1



  2



f  x  dx

To find an : multiply both sides of (i) by cos nx and integrating.   2



  2



f  x  cos nx dx 

a0 2

  2



cos nx dx 

  2        a cos nx cos nx dx bn sin nx  cos nx dx   n      n 1   n 1 

 0   an  0 Hence an 

1



  2



f  x  cos nx dx .

To find bn : multiply both sides of (i) by sin nx and integrating

6

Engineering Mathematics - II   2



f  x  sin nx dx 

a0 2

  2



sin nx dx 

  2       a cos nx sin nx dx   n    bn sin nx  sin nx dx   n1     n 1   0  0   bn 1   2 f  x  sin nx dx . Hence bn     2





Deductions: (i) Taking   0 , then interval becomes 0  x  2 and (i) becomes

a0 

1



2

f  x  dx, an 

0

1



2

0

f  x  cos nx dx, bn 

1



2

f  x  sin nx dx

0

(ii) taking    , then interval becomes   x   and (i) becomes

a0 

1





 

f  x  dx, an 

1



 

f  x  cos nx dx, bn 

Dirichlet’s conditions:

1





  f  x  sin nx dx 

(RGPV Feb 2007)

Any function f  x  can be expressed as a Fourier series

f  x 

 a0    an cos nx   bn sin nx 2 n 1 n 1

in the interval  0, 2  or   ,   , where a0 , an , bn are constants provided that f  x  satisfies the following conditions: (i)

f  x  is periodic.

(ii)

f  x  and its integrals are finite and single valued.

(iii)

f  x  has a finite number of discontinuities.

(iv)

f  x  has a finite number of maxima and minima.

when these conditions are satisfied, the Fourier series converges to f  x  at every point of continuity. At a point of discontinuity, the sum of the series is equal to the mean of the limits on the right and left. i.e.

1  f  x  0   f  x  0   2

where f  x  0  and f  x  0  be the right and left limit.

Fourier Series

7

Parseval’s theorem:- Let the Fourier series

f  x 

 a0    an cos nx   bn sin nx, 2 n 1 n 1

If f  x  converges uniformly to f  x  at every point of the interval  0, 2  then

1





2

0

2 a2   f  x   dx  0    an 2  bn 2  . 2 n 1

Illustrative Examples Example 1. Find a Fourier Series to represent x  x 2 from x   to x   . Hence show

1 1 1 1 2     ....  12 22 32 42 12 Sol: Let

(RGPV Feb 2005, June 2006, Feb 2010)

f  x   x  x2 ,    x   .

Fourier Series over the interval   ,   be

f  x 

 a0    an cos nx   bn sin nx 2 n 1 n 1

..…(i)

Now,

a0 

 x  x  dx   

1

2





2 2 1  x 2 x3         2 3   3

an  

 x  x  cos nx dx  

1

2



 1  x cos nx dx   x 2 cos nx dx       



1



x  

2

cos nx dx,

 since x cos nx is an odd function.

8

Engineering Mathematics - II



  1   2 sin nx  sin nx  x dx      2 x n  n     

1  sin nx cos nx sin nx     x2  2x 2  2 3  n n n    1 sin n  0, cos n   1n    2  4 cos n    n 4 n   2  1 n bn 

 x  x  sin nx dx  1



2



 1  sin  x nx x 2 sin nx dx           1  since x 2 sin nx is an odd function.   x sin nx dx







   cos nx 1   cos nx     x dx     n  n2     

1  cos nx sin nx    x  3  n n    1  cos n cos n      n n   2 n    1 n Hence (i) becomes

xx  2

2 3

2



 4 n 1

 1 n2

n



cos nx  2 n 1

 1 n

n

sin nx

 cos x cos 2 x cos 3x   sin x sin 2 x sin 3x   4  2   2  ...  2      ... 2 3 2 3 2 3  1   1  2   cos x cos 2 x cos 3x   sin x sin 2 x sin 3 x    4 2    ...  2     ... 2 2 3 2 3 2 3  1   1  

Fourier Series

9

Putting x  0 , we get

2

1 1 1   4  2  2  2  ...  3 1 2 3  2  1 1 1  2  2  2  ...  1 2 3 12 0

2 Example 2. Find a Fourier Series to represent the function f  x   x  x in the interval

  x   . Hence show that Sol: Let

2 6

 1

1 1 1    ... 22 32 42

(RGPV Feb 2006)

f  x   x  x2 ,    x   .

Fourier Series over the interval   ,   be

f  x 

 a0    an cos nx   bn sin nx 2 n 1 n 1

…..(i)

Now,

a0 

 x  x  dx   

1

2





1  x 2 x3  2 2      3   2 3   an 

 x  x  cos nx dx  



 x  x  cos nx dx  



2



1

2





1

2







0

Since x cos nx is an odd function.

x 2 cos nx dx 

2  sin nx  cos nx   sin nx     x2  2 x   2   2   3  n  n  n  0   2  cos n  4 n   2  2  1 2   n  n

10

bn 

Engineering Mathematics - II

 x  x  sin nx dx  

1

2





1



x sin nx dx  



2

since x 2 sin nx is an odd function.









0

x sin nx dx 

2  cos nx  sin nx     x    2  n n 0   2   cos n  2 n      1  n n   Hence (i) becomes x  x2 

2 3



 4

 1

n 1

n2

n



cos nx  2

 1

n 1

n

n

sin nx

2

cos 2 x cos 3 x sin 2 x sin 3 x      4   cos x   2  ...  2   sin x    ... 2 3 2 3 2 3     2 sin 2 x sin 3 x   cos x cos 2 x cos 3x     4 2    ...  2 sin x    ... 2 2 3 2 3 2 3  1   



 2 

Which is the required Fourier Series. Now putting x   and x   in equation (2), we have

  2 

2

1 1    4 1  2  2  ... 3  2 3 

2 and    

2

1 1    4 1  2  2  ... 3  2 3 

Adding (3) and (4), we have

2 2 1 1    8 1  2  2  ... 3  2 3  2  1 1   1  2  2  ... 6 2 3 2 2 

..…(3)

..…(4)

Fourier Series

11

Example 3 Find Fourier Series represented of f  x   x sin x, 0  x  2 . (RGPV June 2004, June 2007, Dec 2008) Sol: Let f  x   x sin x, 0  x  2 The Fourier series of f  x  in  0, 2  be  a0    an cos nx   bn sin nx 2 n 1 n 1

f  x 

…..(1)

Now

a0   an  



2



2

1



0

1

0



2



2

1

 1

0

0

1 2 1  2 

f  x  dx x sin x dx 

2

 x   cos x     sin x   0  2 

f  x  cos nx dx x sin x cos nx dx



2



2

0

0

1

x  2sin x cos nx  dx x sin  n  1 x  sin  n  1 x  dx 2 cos A sinB  sin  A  B   sin  A  B   2

1   cos  n  1 x cos  n  1 x   sin  n  1 x sin  n  1 x    x         2 2 n 1 n  1   2   n n   1 1       0    cos 2  n  1  cos 2  n  1     2   n 1 n 1    1 1 2 if n  1    2 , n 1 n 1 n 1 

1 2

12

Engineering Mathematics - II

But if n  1 , then

a1 



2



1 2



1



2

f  x  sin nx dx

0

1







1 2

x sin 2 x dx

1   cos 2 x   sin 2 x    x   2     4    2    0  

2

1

2

0

1  2 bn 

x sin x cos x dx

0

2

0



x sin x sin nx dx

2

0

x cos  n  1 x  cos  n  1 x  dx 2

1   sin  n  1 x sin  n  1 x   cos  n  1 x cos  n  1 x  x         2 2 2   n  1 n  1     1 1 n n      0  

 cos 2  n  1  cos 2  n  1  1 1      2 2 2 2  n  1  n  1   n  1   n  1

1 2

 1 1 1 1      0,  2 2 2 2   n  1  n  1  n  1  n  1  But if n  1 , then 

b1 

1 2

1



2

0

1 2 1  2 

x sin x sin x dx



2



2

0

0

x 2sin 2 x dx x 1  cos 2 x  dx 2

1   sin 2 x   x 2 cos 2 x     x  x    2   2   2 4  0



1 2

 4 2 1 1         2 .2  2 4 4 

if n  1

Fourier Series

13

Hence Fourier Series (1) becomes

f  x 

 a0  a1 cos x  b1 sin x   an cos nx  0 2 n2

 bn  0 

 1 2 x sin x  1  cos x   sin x   2 cos nx 2 n  2  n  1

1 2 2  1  cos x   sin x  2 cos 2 x  2 cos 3 x  ... 2  2  1  3  1 Example 4. Find the Fourier Series to represent the function, if

  ,    x  0 f  x   0 x  x, Hence deduce that

2 8

Sol: Let f  x   a0 



1 1 1    ... 12 32 52



a n 1

n

(RGPV Dec 2004, Feb 2007, Dec 2008)

cos nx  bn sin nx 

where

1  f  x  dx 2   1  0  f  x  dx   f  x  dx   0  2   1 0 1     dx  x dx   2  2 0

a0 



1 0 1  x2     x   2 2  2  0 

 2



2   4 4

2  f  x  cos nx dx 2   1 0      cos nx  dx   x cos nx dx   0   

an 

…..(1)

14

Engineering Mathematics - II  0 1    sin nx    sin nx   cos nx         x    1   2       n    n  n  0  

1  cos n 1  0  2   n2 n  cos n  1   n2 

If n is even cos n  1 then an  0 i.e. a2  a4  ....  0 If n is odd cos n  1 then an  

2 2 2 i.e. a1   2 , a3   etc. 2 n  .1  .32

and

2  f  x  sin nx dx 2   1 0      sin nx  dx   x sin nx dx   0   

bn 

 0 1    cos nx    cos nx   sin nx        x    1   2    n  n  0     n    

1    cos n  cos n  1  2 cos n    0   n n n  n  1 1 1  if n is even cos n  1 then bn   , i.e. b2   , b4   etc. 2 4 n 3 3 3 3 If n is odd cos n  1 then bn  , i.e. b1  , b3  , b5  etc. 1 3 5 n 

Now putting values in (1) then required Fourier Series is



21 1 1  cos x  2 cos 3 x  2 cos 5 x  ...  2  4  1 3 5  1 3 3   1 sin x  2 sin 2 x  3 sin 3 x  ...

f  x  



To find the sum: At x  0 the series converges to

f  0  0  f  0  0 2



   0  2 2

…..(2)

Fourier Series

15

and at x   the series converges to

f    0   f   0      0 2 2 The L.H.S. of (2) is

 at x  0 and is 0 at x   2

Therefore putting x  0 in R.H.S. of (2) we get







2

 4



2 1 1 1   2  2  ... 2   1 3 5 

or

2 8



1 1 1    ... 12 32 52

x Example 5 Obtain the Fourier Series for f  x   e in the interval   x   .

Sol: Suppose that 



n 1

n 1

f  x   a0   an cos nx   bn sin nx Now

1  1  x f x dx  e dx   2  2  1 x  1  sinh   e    e  e       2 2  1  1  an   f  x  cos nx dx   e x cos nx dx a0 











 1  ex   1.cos nx  n sin nx   2   1  n   1  e cos n  e cos  n    2   1  n  2  1 sinh  cos n e  e    2   1  n   1  n 2  n

…..(1)

16

Engineering Mathematics - II

bn  

1



f  x  sin nx dx  

1



e  

x



sin nx dx 

 1  ex 1.sin nx  n cos nx     2   1  n   1   n  e cos n   n  e  cos  n    2   1  n  

 n  cos n  1  n 2 

e



 e  

2  1 n sinh  n



 1  n 2 

Now putting values of a0 , an & bn in (1) we get

f  x  e  x

ex 

sinh 







2  1 sinh 

n 1

n

 1  n 2 

 cos nx  n sin nx 

2sinh x  1 1 1    cos x  sin x    cos 2 x  2sin 2 x   ...   2 2 5 

Which is the required Fourier Expansion. Example 6. Find a series of sin es and cosines of multiples of x which will represent f  x  in the interval   ,   then

  x  0 0  f  x  1  4  x 0  x   Sol: Let f  x   a0 



a n 1

n

cos nx  bn sin nx 

…..(1)

Fourier Series

1 2

a0 



0







0

17

1 1   f  x  dx  2   f  x  dx  2  f  x  dx 1 2

0





0

1  x dx 4

2 2 1  . . 8 2 16 1  an   f  x  cos nx dx 



…..(2)





1

0





0

1 f  x  cos nx dx   f  x  cos nx dx    

 0

1





0

1  x cos nx dx 4 

1  sin nx  cos nx     x.  1.    n n 2   0 4  1 1  0  2  cos n  1   4 n  1 n  2  1  1  4n  

Now if n is odd

 1

n

 1

1 1  1  2 2 4n 2n 1 1 a1   , a2   2 ,.... 2 2.3 an 

And if n is even

 1 an 

n

1

1 1  0,  a2  a4  ...  0 4n 2

Similarly we have

bn  

 4n

 1

n

18

Engineering Mathematics - II

b1 

 4

, b2  

 4.2

, b3 

 4.3

, b4  

 4.4

......

Now putting values in (1) we get

f  x   a0   a1 cos x  b1 sin x    a2 cos 2 x  b2 sin 2 x   ...... 

2

   1       cos x  sin x    0  sin 2 x   . 16  2 4 4.2      1  sin 3x   .....   2 cos 3x  4.3  2.3 

Example 7. Find the Fourier Series expression of the function f  x  given by

f  x   x for    x  

(RGPV Dec 2005, Dec 2007)

Sol: Let the Fourier Series be

f  x 

 a0    an cos nx   bn sin nx 2 n 1 n 1

Now,

a0  

1



f  x  dx   



0





0

x dx      x  dx        1

1



x dx  

 0  x2   1   2  2  1  x 2                  2   2 0    2 2 

an   

1

 1





  f  x  cos nx dx 



  x cos nx dx 

 1 0 x nx dx   cos   0 x cos nx dx    

..…(1)

Fourier Series

2







0

19

x cos nx dx 

2  sin nx   cos nx   2 2  n  x  1  1 cos n  1    2 2  2    n n  n 0  n

bn  

1

 1





  f  x  sin nx dx 



  x sin nx dx 

 1 0   x nx dx sin   0 x sin nx dx     0



Putting the value of a0 , an , bn in (1), we get



f  x  

2

 2



2  n 1  1 cos nx 2   n 1  n

 

4 1 1  cos x  2 cos 3 x  2 cos 5 x  ......   3 5 

Even and Odd functions: A function

f  x  is said to be an even function if

f   x   f  x  , e.g. cos x, x 2 , x3 sin x, etc. A function f  x  is said to be an odd function if

f   x    f  x  , e.g. sin x, x3 , x3 cos x, x 2 sin x etc. The Fourier Series of f  x  in the interval   ,   is given by 



n 1

n 1

f  x   a0   an cos nx   bn sin nx For even function:

2



a0 

f  x  dx 

an 

2

0



f  x  cos nx dx  0

…..(1)

20

Engineering Mathematics - II

and

bn  0

 from (1), The Fourier Series becomes 

f  x   a0   an cos nx n 1

Hence if f  x  is an even function then Fourier Series contains only cosine term. For Odd function:

a0  0, an  0 and bn 

2



f  x  sin nx dx  0

 from (1), the Fourier series becomes 

f  x    bn sin nx n 1

Hence if f  x  is an odd function then Fourier series contains only Sine term. Half Range Fourier Series: If a half range series for a function f  x  is desired, then the function is defined in the interval  0, l  , (i.e. half of the interval  l , l  and is said to be half range.) Thus we can obtain the Fourier series either cosine series or sin e series only. Cosine Series: If

f  x  is an even function defined on interval l  x  l. Then

cosine Fourier series in half range interval  0,l  becomes f  x  where

a0 

a0   n x    an cos   2 n 1  l 

2 l 2 l  n x  f  x  dx and an   f  x  cos   dx, n  1, 2,3,...  l 0 l 0  l 

Sine Series: If f  x  is an odd function defined on interval l  x  l , then Sine Fourier series in half range interval  0,l  becomes   n x  f  x    bn sin    l  n 1

Fourier Series

where

bn 

2 l  n x  f  x  sin   dx,  l 0  l 

n  1, 2,3,......

Example 8. Find Fourier Series representation of f  x   x in the interval l  x  l. Or Find cosine Fourier series of f  x   x in  0, l  .

(RGPV 2001)

Sol: Let f  x   x , which is an even function in the interval  l , l 

cos ine Fourier series of f  x  in half range interval  0,l  becomes f  x 

a0   n x    an cos   2 n 1  l 

…..(1)

Now,

2 l 2 l f  x  dx   x dx  l 0 l 0 2 l   x dx l 0 2 l2  . l l 2

a0 

 x  x,

and

an  

2 l  n x  f  x  cos  dx  l 0  l  2 l  n x  x cos   dx  0 l  l 

l  n x  n x  sin sin   2  l   l l dx    x n  0 n l       l l  0   l

 n x    cos 2 l   0 2 l n          l  0 

0  x  l

21

22

Engineering Mathematics - II

2 l2  . 2 2  cos n  cos 0  l n 2l n  2 2  1  1  n  when n is odd, an  

4l n 2 2

when n is even, an  0 Hence Fourier series (1) becomes

 n x  cos    l  n 1 x 3 x 5 x   cos cos cos l 4l  l  l  ......   2 2l   2 2 2   1 3 5   

f  x 

l 4l  2 2



1

n

2

Example 9. A periodic function of period 4 is defined as f  x   x ,  2  x  2. Find its Fourier Series expansion. Sol: Taking l  2 in the above example 8 and proceed.

(RGPV Dec 2002)

2 Example 10. Find a Fourier series to represent f  x   x in the interval l  x  l.

(RGPV June 2005, Feb 2010) Sol: Let f  x   x is an even function in the interval  l , l  . 2

 f  x 

a0  Now,

a0  n x   an cos 2 n 1 l

2 l 2 l f  x  dx   x 2 dx  l 0 l 0 l

2  x3  2l 2     3 l  3 0

2 l n x f  x  cos dx  l 0 l 2 l n x dx   x 2 cos l 0 l

an 

..…(1)

Fourier Series

23

l

   n x n x  n x   sin cos sin      2 l  2x   l   2  l    x2 n l n 2 2  n 3 3          l l2 l3    0 

4l 2 n 1 2 2  n

Hence the Fourier series (1) becomes

l 3 4l 2 x   2 3  2



 n 1

 1 n

2

n

cos

n x l

2 x 1 3 x x 1  1  cos cos cos     ...... 2 2 2  1 2 3 l l l  3 2 2 x 1 3 x l 4l  1 x 1  x 2   2  2 cos  2 cos  2 cos  ...... 3  1 2 3 l l l  

3

2

4l l  2 3 

2 Example 11. Obtain the half range sine series for f  x    x  x in the interval

0  x  .

(RGPV June 2005)

n

Sol :- Let the Fourier Sine series be 

f  x    bn sin nx n 1

where

bn  

2





 f  x  sin nx dx 0

 x  x  sin nx dx  2



2

0

  2  cos nx    cos nx   2  2    x  x      x       dx  n  0 0 n          2 sin nx  sin nx     0  0     2 x  2     2  2 dx  0   n 0 n  

24

Engineering Mathematics - II

2 cos nx   0  2 3   n 



0

4  cos n  1  n3 4 n   3  1  1  n  

Hence the required Fourier half range Sine series is 

n  4  1  1 sin nx 3    n 1   n  4 2 2 2      3 sin x  3 sin 3 x  3 sin 5 x  ...... 3 5  1 

 x  x2    



8 1 1 1  sin x  3 sin 3 x  3 sin 5 x  ...... 3  3 5  1 

Example 12. Express f  x   x as a: (i) Half range Sine series in 0  x  2.

(RGPV June 2006)

(ii) Half range cosine series in 0  x  2.

(RGPV Jan 2007, June 2009)

Sol: (i)

The half range Fourier Sine series be 

f  x    bn sin n 1

where

bn 

n x 2

..…(1)

2 2 n x f  x  sin dx  2 0 2

  x sin 2

0

n x dx 2 2

  n x   n x     cos  sin   2  2   x    n   n 2 2             2 0 4 4 n   1 n

Fourier Series

25

Hence the required half range sin e series is  n x n  4  x     1 sin n  2 n 1  4  x 1 2 x 1 3 x   sin  sin  sin  ...... 2 2 2 3 2  

(ii)

The half range Fourier cosine series be

f  x 

a0  n x   an cos 2 n 1 2

…..(2)

where 2 2 2 f  x  dx   x dx  2  0 2 0 n x 2 2 an   f  x  cos dx 2 0 2 2 n x   x cos dx 0 2

a0 

2

  n x   n x   cos   sin   2  2   x   n 2 2     n       2   4 0 4 n  2 2  1  1   n Hence the required half range cosine series is x  1

4



2



1  n  1 n 1

2

n

n x  1 cos  2

4  2 x 2 3 x 2 5 x   2 cos  2 cos  2 cos  ...... 2    1 2 3 2 5 2  8 1 n 1 3 x 1 5 x   2 cos  2 cos  ...... x  1  2  2 cos  1 2 3 2 5 2   1

Example 13. Find the half range Sine Fourier series for the function f  x   x in the interval 0  x   .

(RGPV June 2007)

26

Engineering Mathematics - II

Sol: The half range Sine series be 

f  x    bn sin n 1

n x l

For the interval  0,   , 

f  x    bn sin nx

…..(1)

n 1

where

bn   



2

f  x  sin nx dx  0

2





0

x sin nx dx

    cos nx  2    cos nx    x      0    dx  n  0 n       

2  x cos nx sin nx     2  n n   



0

2 2 n  cos n     1 n n

Hence, the half range Sine series be  n  2 x       1 .sin nx n n 1  1 1    2 sin x  sin 2 x  sin 3 x  ...... 2 3  

Example 14. Find the half range cosine Fourier series of the function:

0  t 1 2t , f t    2  2  t  , 1  t  2

(RGPV June 2003)

Sol: The half range cosine Fourier series in  0, 2  is

f t  

a0  n t   an cos 2 n 1 2

…..(1)

Fourier Series

27

where

a0 

2 2 f  t  dt  2 0

 f  t  dt   f  t  dt 1

2

0

1

  2t dt   2  2  t  dt 1

2

0

1

2

  t 2     t    2  2t    0 2  1   2 1

1   1  2 4  2  2    2 2  2 2 n t an   f  t  cos dt 0 2 2 1 2 n t n t   f  t  cos dt   f  t  cos dt 0 1 2 2 1 2 n t n t   2t cos dt   2  2  t  cos dt 0 1 2 2 1

2

  n t n t  n t n t  cos sin cos  sin 2   2  2   2 t  2 22   2  2  t  2 2  n n  n   n    2 2 4  0 4 1 2 n 4 n  4 4 4 n n  2  2 2 cos   2  sin  2 2 cos  2 2  2 2 cos n  sin n 2 n 2  2 n 2 n n  n n 4 4  8   2  2 2 cos  2 2  2 2 cos n  2 n n n   8  n   1  cos n  an  2 2  2 cos n  2  For n  1 ,

a1 

8    2 cos  1  cos    0 2  2 1  

( cos   1, cos

2

For n  2,

a2 

8 2 2

2

 2cos   1  cos 2   

32 22  2

( cos 2  1)

 2

 0)

28

Engineering Mathematics - II

For n  3,

a3  For n  4,

a4  For n  5,

3   2 cos  1  cos 3   0  2 3   8

2

2

8 4 2 2

( cos

3  0, cos 3  1) 2

 2 cos 2  1  cos 4   0

a5  0 For n  6 ,

a6 

8 6 2

2

 2 cos 3  1  cos 6   

a7  0, a8  0, a9  0, a10  

32 62  2

32 and so on. 102  2

 Half range cosine series becomes 32  1 1 1  f  x   1  2  2 cos  t  2 cos 3 t  2 cos 5 t  ......  2 6 10  Example 15. Obtain the Fourier series for f  x  : 0,    x  0 f  x   2 x , 0  x  

(RGPV Dec 2003)

n

Sol :- The Fourier series be  a0  ..…(1)   an cos nx   bn sin nx 2 n 1 n 1  1  1 0 a0   f  x     f  x  dx   f  x  dx    0       1 0 2    0 dx   x 2 dx   0  3     1  1 0 an   f  x  cos nx dx    0.cos nx dx   x 2 cos nx dx  0      

f  x 

where

  1   2 sin nx  sin nx    x dx    0 2 x n 0 n    



2 n



2 2 n  cos nx sin nx    x n  n 2   n 2  cos n   n 2  1 0

Fourier Series

bn  



1

f  x  sin nx dx   

 1 0 0.sin nx dx   x 2 sin nx dx   0    

  1   2 cos nx  cos nx   x dx     0 2 x    n 0 n  n  2 1    1 2  x sin nx cos nx            n n n n 2 0 



 1  

n

 2 2  n3  n   

Hence the Fourier series becomes

f  x 

2

1 1    2  cos x  2 cos 2 x  2 cos 3x  ......  6 2 3  

1  2  2     13 1

  2 2 sin x    3 2  2

   sin 2 x  ......  

Example 16. Obtain the Fourier series for the function:

0  x  1  x, f  x      2  x  , 1  x  2 

(RGPV June 2002, Dec 2004)

Sol: The Fourier series be

f  x 

 a0    an cos nx   bn sin nx 2 n 1 n 1

where

a0   f  x  dx   f  x  dx 1

2

0

1

   x dx     2  x  dx 1

2

0

1

1

2

 x2   x2        2 x     2 1  2 0 

…..(1)

29

30

Engineering Mathematics - II

an    x cos nx dx     2  x  cos nx dx 1

2

0

1

1

2

sin n x  sin n x  cos n x     cos n x     x     2 2      2  x        2 2   n n  n   0   n   1  1   cos 2n cos n   cos n  2  2 2   2  n    n 2 n   n 2 n  2  1  1  n bn    x sin n x dx     2  x  sin n x dx 1

2

0

1

1

2

  cos n x   sin n x     cos n x   sin n x     x        2 2      2  x           2 2   n  n   n  0    n   1   cos n cos n   0 n n Hence the required Fourier series becomes

f  x 

 2



4  cos  x cos 3 x cos 5 x     ...... 2 2 2   1 3 5 

Example 17. Obtain a half range cosine series for

l  for 0  x  kx, 2 f  x   k  l  x  , for l  x  l.  2

(RGPV Dec 2004, Feb 2006)

Sol: Let the cosine series be

f  x 

a0  n x   an cos 2 n 1 l

where

2 l f  x  dx l 0 l  2 l    2 kx dx   l k  l  x  dx  l 0 2 

a0 

…..(1)

Fourier Series

31

l l   2   kx 2  2   x 2        k  lx     l   2 0   2   l   2

  l 2 l 2   2  kl 2  kl 2  kl 2 l2   k  l 2    k        l 8 2   2 8  l  4  2 2 l n x an   f  x  cos dx l 0 l l n x n x  2 l    2 kx.cos dx   l k  l  x  cos dx  l 0 l l 2  

l l   2  l n x l2 n x  2  l n x l2 n x    kx  k 2 2 cos sin sin  k 2 2 cos   k  l  x   l   n l n l 0  n l n l l  2  



2 2   kl 2 n kl 2  n kl 2 n kl 2 n      kl sin sin  2 2  cos  1    2 2 cos n   2 2 cos    2 n  2 2n 2  l   2n l n   n 



 2  2kl 2 n kl 2 kl 2 cos  2 2  2 2 cos n   2 2 2 n l n  n 

an 

2kl n 2 2

n    2 cos 2  1  cos n 

For n  1,

a1 

2kl 12  2

    2 cos 2  1  cos    0

   cos   1, cos  0  2  

For n  2,

2kl 8kl 2cos   1  cos 2   2 2 2 2  2 2 For n  3, a2 

a3 

2kl 32  2

3    2 cos 2  1  cos 3   0

For n  4,

a4 

2kl  2 cos 2  1  cos 4   0 42  2

cos 2

 1

3    0, cos 3  1 cos 2  

32

Engineering Mathematics - II

For n  5,

8kl 8kl , a7  0, a8  0, a9  0, a10  2 2 and so on. 2 2 6 10   Fourier cosine series becomes a5  0, a6 

f  x 

kl 8kl  1 2 x 1 6 x 1 10 x   2  2 .cos  2 .cos  2 .cos  ...... 4  2 l 6 l 10 l 

f  x   1  cos x , 0  x  2 in a Fourier series. Hence

Example 18. Expand evaluate

1 1 1    ...... 1.3 3.5 5.7

(RGPV Sept 2009)

Sol: Let f  x   1  cos x

 2 sin

x 2

The Fourier series be

f  x 

 a0    an cos nx   bn sin nx 2 n 1 n 1

…..(1)

where

a0 

1



2

0

x 2 sin dx 2

x 2  2 cos   2  

 0

4 2



2

x 2 sin cos nx dx 2 2 2 x  2 cos nx sin dx  0 2 2 1 2   1 1   sin  n   x  sin  n   x  dx    2 2  2 0   

an 

1

2



0

2

1  2 2  2n  1   2n  1     2n  1 cos  2  x  2n  1 cos  2  x  2      0

Fourier Series

33

2  1 1  cos  2n  1   1  cos  2n  1   1    2n  1 2  2n  1 



2 2 2  4 2       2n  1 2n  1    4n 2  1



cos  2n  1   cos  2n  1   1 2

x 2 sin sin n x dx 2 2 2 x 2sin n x sin dx   2 0 2 1 2   1 1   cos  n   x  cos  n   x  dx   0  2 2  2   

bn 

1



0

1  2

2

 2 2  2n  1   2n  1    2n  1 sin  2  x  2n  1 sin  2  x      0 

2 1 1  sin 2 1 0 sin  2n  1   0 n           2n  1   2n  1 



0 Hence the required Fourier series becomes

f  x 

2 2





4 2 cos nx 2 n 1   4n  1



when x  0, we have

0

2 2

 







 4n n 1

1 2

1

1 2 n 1 4n  1 1 1 1 1 'or'    ......  1.3 3.5 5.7 2 'or' 

1

4 2

2



2 Example 19. Find the Fourier series expansion of f  x   2 x  x in  0,3 and hence

deduce that

34

Engineering Mathematics - II

1 1 1 1 2     ......  . 12 22 32 42 12

(RGPV June 2008)

Sol: The required Fourier series be

f  x 

a0  n x  n x where 2l  3   an cos   bn sin 2 n 1 l l n 1

..…(1)

where

a0 

1 2l 2 3 f  x  dx    2 x  x 2  dx  0 3 0 l 3

2 x3    x2    0 3 3 0 1 2l n x 2 x  x 2  cos dx   l 0 l 2 3 2n x dx    2 x  x 2  cos 3 0 3

an 

3

   cos 2n x    sin 2n x   2n x      cos 2 2 3 3 3      2x  x    2  2x   2  2 3 n 2      3  2n   2n             3   3     3  0  2 9 9  . 2 2  4 cos 2n  2  2 2 3 4n  n bn 

1 2l n x 2 3 2n x 2 x  x 2  sin dx    2 x  x 2  sin dx   l 0 l 3 0 3 3

   sin 2n x  cos 2n x    cos 2n x        2 2 3 3 3      2x  x   2   2  2x 2 3 2n   3  2n   2n             3    3  0   3    2  6 27 3    2 2 cos 2n  3 3  cos 2n  1   3 n  4n   n

Fourier Series

35

Hence, the Fourier series becomes 

2 x  x 2   n 1

Putting x 

3

9 n 2 2

cos

2n x  3 2n x sin  3 3 n 1 n

3 , we have 2

 9 9   2 2 cos n 4 n 1 n 

1 1 1 1 2 or 2  2  2  2  ......  1 2 3 4 12 Example 20. Expand

1  4  x, f  x   x  3 ,  4

if 0  x  if

1 2

1  x 1 2

as a Fourier series of sin e terms.

(RGPV Sept 2009)

Sol: The Fourier sin e series be 

f  x    bn sin n x

…..(1)

n 1

where

2 1 f  x  sin n x dx 1 0 1  11  3   2   2   x  sin n x dx  1  x   sin n x dx  0 4  2  4 

bn 

1

1

 1   3  cos n x sin n x   cos n x sin n x  2  2    x   2 2   2   x    2 2  4  n n  0 n  1  n  4  

2

36

Engineering Mathematics - II

n n  sin sin  1 1 1 1 n n  cos cos n  cos  2   2 22   2 22 4 2 4 4 4 2 n  n  n  n  n  n   n 4sin 1  n  1   1   2 22   2n n

1

For

n  1,

b1 

For

n  2,

b2  0,

For

n  3,

b3 

For

n  4,

b4  0,

For

n  5,

b5 

For

n  6,

b6  0





4

2

    

,

1 4  2 2, 3 3 

1 4  2 2, 5 5  and so on.

Hence Fourier sine series becomes

4  4  1 4   1  1 f  x     2  sin  x    2 2  sin 3 x    2 2  sin 3 x  ......     3 3    5 5   Example 21 If f  x   cos x , expand f  x  as a Fourier series in the interval   ,   . Sol: As f   x   cos   x   cos x  f  x  . Thus cos x is an even function. Therefore, the Fourier series be

f  x 

a0    an cos nx 2 n 1

..…(1)

Fourier Series

where

a0 

2







0

cos x dx

  2  2  0 cos x dx     cos x  dx   2   2 4    sin x02  sin x     2 



an 

2





0

cos x cos nx dx

  2  2  0 cos x cos nx dx     cos x  cos nx dx   2    1     2 cos  n  1 x  cos  n  1 x dx   cos  n  1 x  cos  n  1 x dx  0 2 



     n x n 1 si  n   x  2  sin  n  1 x sin  n  1 x   1   sin  1          n  1 n  1 0  n  1 n  1    2        sin n  1 sin  n  1 sin  n  1 sin  n  1  1  2 2 2 2     n 1 n 1 n 1 n 1    n n   cos cos 2 2  2       n 1 n 1    n 4 cos 2 , n 1  2   n  1

For

  2  2 n  1, a1    cos 2 x dx   cos 2 x dx   0 0 2 

37

38

Engineering Mathematics - II

Hence Fourier series becomes

cos x 

2





4 1 1  cos 2 x  cos 4 x  ......  15  3 

Example 22. Prove that in 0  x  l : x  deduce that

1 4l  2 2

x 1 3 x   cos l  32 cos l  ...... and

1 1 1 4 .     ...... 14 34 54 96

(RGPV Dec 2003)

Sol: Let f  x   x, then cosine series in  0,l  be

f  x 

a0  n x   an cos 2 n 1 l

…..(1)

where

2 l 2 l2 x dx . l  l 0 l 2 2 l n x an   x cos dx l 0 l l l l 2  l n x  n x  sin dx     x. sin   0 l   n l 0 n l  a0 

n x  2 l  l cos  .   l n  n l 0 2l 2l n  2 2  cos n  1  2 2  1  1   n n l

Hence Fourier cosine series becomes

x

 l 2l n x n   2 2  1  1 cos  2 n 1 n   l

l 4l   2 2 

n 1 3 x 1 5 x    cos 2  32 cos l  52 cos l  ......

…..(2)

Fourier Series

39

Now, using Parsevel’s theorem:



b

a

 f  x   dx  2

 b  a  a0 2     an 2  bn 2    2  2 n 1 

 l  0 l2  4l    x dx       0 2  2 n odd  n 2 2  l



2

2

  

l 3 l  l 2 16l 2  1 1 1     4  4  4  4  ......   3 2  2  1 3 5 

2l 2 l 2 16l 2  1 1 1     4  4  4  4  ......  3 2  1 3 5   

l 2 16l 2  1 1 1    4  4  4  ......  4 6  1 3 5 

4



96

1 1 1    ...... 14 34 54

2 Example 23. Obtain the Fourier series for the function f  x   x ,    x   . Hence

deduce that

1 1 1 2    ......   RGPV June 2009  6 12 22 32 2 1 1 1 (ii) 2  2  2  ......  12 1 2 3 1 1 1 2  iii  2  2  2  ......  8 1 3 5 1 1 1 4 iv    ......    4 4 4  RGPV June 2008, Dec 2010  90 1 2 3 2 Sol: Let f  x   x . i.e. an even function then Fourier series be

i

f  x 

a0    an cos nx 2 n 1

…..(1)

where

a0 

2







0



2  x3  2 x dx      2   3 0 3 2

40

Engineering Mathematics - II

an 

2





0

x 2 cos nx dx 

2  sin nx   cos nx    sin nx     x2  2x    2  2 3  n  n   n 0 2  cos n  4 n 2  2  1 2    n  n



Hence Fourier series becomes

x  2

x  2

(i)

2 3



 4 n 1

 1 n cos nx n2

2

 cos x cos 2 x cos 3x cos 4 x   4 2     ...... 2 2 2  1  3 2 3 4

…..(2)

Putting x   , we get

2

1 1  1 1   4  2  2  2  2  ......  3 2 3 4 1  2 2 1 1 1 1    4  2  2  2  2  ......  3 3 4 1 2 

2 

 (ii)

1 1 1 1 2 ......      6 12 22 32 42

Putting x  0 , we get

2

1 1 1 1   4  2  2  2  2  ......  3 3 4 1 2  2  1 1 1 1  2  2  2  2  ......  12 1 2 3 4 0

(iii)

..…(3)

…..(4)

Adding (3) and (4), we get 2 1 1 1   2  2  2  2  ......   5 1 3  4 2 1 1 1  2  2  2  ......  8 1 3 5

…..(5)

Fourier Series

(iv)

41

Using Parseval’s theorem:

 a0 2   2 f x dx      an 2  bn 2            2 n 1    4 4  16    x 4 dx     4   18 n 1 n  



  x5  2 16     5   4 n 1 n  5   9



2 5 2 5 1 1 1    16  4  4  4  ......  5 9 1 2 3 



8 5 1 1 1   16  4  4  4  ......  45 1 2 3 



4 1 1 1     ...... 14 24 34 90

Practice Problems 1. Find the Fourier series representation of f  x   x cos x,    x   . n    2n  1 1  Ans : sin nx   2 sin nx  2 n  2  n  1  

2. Obtain Fourier series expansion for f  x   x sin x in the interval   x   . Hence deduce that

 4



1 1 1 1     ...... 2 1.3 3.5 5.7 1 2 2    Ans: 1  2 cos x  1.3 cos 2 x  2.4 cos 3 x  ......

3. Find the Fourier series to represent the function f  x   sin x ,    x   .

 2 4  cos 2 x cos 4 x   Ans:     3  15  ......    

42

Engineering Mathematics - II

4. Find the half range cosine series for the function f  x   sin

x l

, 0  x  l.

(RGPV Dec 2005)

 2 x 4 x 6 x   cos cos cos   2 4 l  l  l  ......  Ans:    3.5 5.7    1.3     

  .  

x 5. Obtain the Fourier series for f  x   e in the interval 0  x  2 .

 1  e2  1  1 1 1 2 3  1      cos x  cos 2 x  cos 3x  ......    sin x  sin 2 x  sin 3x  ......    .  Ans: 5 10 5 10  2  2  2   

6. Find the Fourier series to represent the function

  x  0 0, f  x   sin x, 0  x   Hence show that

1 1 1   ......  1.3 3.5 2  1 2 1 1  1  Ans:     3 cos 2 x  15 cos 4 x  ......  2 sin x   

 . 

7. Find the Fourier series expansion of the periodic function of period 2 , defined

   if x  x, 2 2 by f  x      x, if   x  3 .  2 2

 4  sin x sin 3x sin 5 x    Ans:   12  32  52  ......  .     8. Expand the function f  x  in Fourier series in the interval   ,   :

 2 x, f  x    x,

0 x     x  0.

Fourier Series

43

  21 1 1 1     Ans: 4   12 cos x  32 cos 3 x  ......  3 sin x  2 sin 2 x  3 sin 3 x  ......       9. If f  x  is a function defined by

  0 x  x, 2 f  x     x,   x    2 Express f  x  by a sine Fourier series and also by a cosine series.

 4  sin x sin 3 x sin 5 x   8  Ans:   12  32  52  ...... , 4     

 cos 2 x cos 6 x cos10 x      ...... 2 2 2  2   . 6 10 

10. Find the Fourier expansion of the periodic function

k ,    x  0 f  x   0 x  k , and f  x  2   f  x  . Sketch the graph of f  x  .

 4k  sin x sin 3 x sin 5 x    Ans:   1  3  5  ......  .     11. Expand f  x  in a Fourier series in the interval  0, 2  if

 x, f  x   0,  1 2  Ans: 4   2 

0  x 1 1 x  2

1 1   1 cos  x  32 cos 3 x  52 cos 5 x  ......  

12. Find the Fourier cosine series for Parseval’s theorem to prove that

1 4   4 90 n 1 n 

sin 2 x sin 3 x   sin  x  2  3  ......  

f  x   x   x  in 0  x   and use

44

Engineering Mathematics - II

2 13. Find the Fourier series expansion for the function f  x   x  x in 1  x  1.

 1 4  cos  x cos 2 x cos 3 x  2  sin x sin 2 x sin 3 x    ......   Ans: 3   2  12  2 2  32  ......    12  2 3      14. Find the Fourier series for the function

 0,   f  x   1,   0,

  x  0 0 x

 2

 2

 x 

 1 2  cos x cos 3 x cos 5 x  1  sin x sin 2 x sin 3 x   Ans: 4    1  3  5  ......    1  2  3  ......      15. Express coshx in Fourier series in the interval   x   .

  1    1n  1   2  Ans: sinh      2  cos nx     2 n 1  n  1    16. Obtain Fourier series for the function f  x  given by

 2x 1   , f  x   1  2 x ,   Hence, deduce that

  x  0 0 x 

1 1 1 2 . ......     12 32 52 8

 .  

 . 