calculus ap edition 9th edition larson solutions manual

Calculus AP Edition 9th Edition Larson Solutions Manual Full Download: http://alibabadownload.com/product/calculus-ap-ed...

4 downloads 141 Views
Calculus AP Edition 9th Edition Larson Solutions Manual Full Download: http://alibabadownload.com/product/calculus-ap-edition-9th-edition-larson-solutions-manual/

NOT FOR SALE CHAPTER P Preparation for Calculus

Section P.1

Graphs and Models.................................................................................2

Section P.2

Linear Models and Rates of Change....................................................11

Section P.3

Functions and Their Graphs.................................................................23

Section P.4

Fitting Models to Data..........................................................................33

Review Exercises ..........................................................................................................35 Problem Solving ...........................................................................................................41

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

This sample only, Download all chapters at: alibabadownload.com

NOT FOR SALE C H A P T E R P Preparation for Calculus Section P.1 Graphs and Models 1. y

 32 x  3

4  x2

7. y

x-intercept: (2, 0) y-intercept: (0, 3) Matches graph (b).

x

3

2

0

2

3

y

5

0

4

0

5

y

9  x2

2. y

6

x-intercepts: 3, 0 , 3, 0

(0, 4) 2

(− 2, 0)

y-intercept: (0, 3) −6

Matches graph (d).

(2, 0) x

−4

4

(− 3, − 5)

3. y

6

−2

(3, − 5)

−4

3  x2

−6



x-intercepts:



3, 0 ,  3, 0



8. y

x  3 2

y-intercept: (0, 3)

Matches graph (a).

x

0

1

2

3

4

5

6

x3  x

y

9

4

1

0

1

4

9

4. y

x-intercepts: 0, 0 , 1, 0 , 1, 0

y 10

y-intercept: (0, 0)

8

Matches graph (c).

6

(0, 9)

4

5. y

 2

1x 2

2

(6, 9)

(5, 4)

(1, 4) (2, 1)

(4, 1) x −6

x

4

2

0

2

4

y

0

1

2

3

4

9. y

y 6

(4, 4) 4

−4 − 2

−2

4

2

6

(3, 0)

x2

x

5

4

3

2

1

0

1

y

3

2

1

0

1

2

3

(2, 3)

(0, 2)

y

(−2, 1) 6

x −4

−2

(−4, 0)

2

4

−2

4

(− 5, 3)

(− 4, 2) 2

6. y

5  2x

(− 1, 1)

(− 3, 1) −6

x

1

0

1

2

5 2

y

7

5

3

1

0

3

4

1

3

−4

(1, 3) (0, 2) x

(− 2, 0)

2

−2

y 8

(−1, 7) (0, 5) 4 2

(1, 3) (2, 1)

INSTRUCTOR ST USE ONLY − −66 − −44 − −22 − −22 − −44

( ( 5,0 2

(3, − 1)

x

(4, (4 −3) 3)

© 2010 Brooks/Cole, Cengage Learning

2

© Cengage Learning. All Rights Reserved.

NOT FOR SALE Section P.1

x 1

10. y

3

2

1

0

1

2

3

y

2

1

0

1

0

1

2

x

6

4

3

2

1

y

 14

 12

1

Undef.

1

y

5 4 3 2

3

(3, 2)

2

(− 2, 1) 1

−1

(− 1, 0)

(−1, 1)

2

15.

x

0

1

4

9

16

y

6

5

4

3

2

2

8

12

(9, −3)

16

0 and y

0 when

(16, −2)

−4

(4, −4) (1, −5) −6 (0, −6)

16.

Xmin 20 Xmax 30 Xscl 5 Ymin 10 Ymax 40 Yscl 5

−8

x2

12. y

3 when x

Note that y 1. x

x 4

1 2 3

Xmin 5 Xmax 4 Xscl 1 Ymin 5 Ymax 8 Yscl 1

y

−2

1 4

−2 −3 −4 −5

(− 3, − 1)

x 6

−4

1 2

x −1

(− 6, − 14 ) (− 4, − 12 )

3

(1, 0) (0, − 1)

−2

11. y

2

(0, 12 ) (2, 14 )

(2, 1) x

−3 −2

0

y

4

(−3, 2)

3

1 x 2

14. y

x

Graphs and Models Graph

x

2

1

y

0

1

0 2

2

7

14

2

3

4

16 when x

Note that y

y

17. y

0 or 16.

5 x

5 5 4

(14, 4)

3

(−4.00, 3) (2, 1.73)

(7, 3)

(− 1, 1)

−6

(2, 2) (0, 2 )

2

6

−3

x

(− 2, 0)

13. y

5

10

15

20

3 x

x

3

2

1

0

1

2

3

y

1

 32

3

Undef.

3

3 2

1

y

(a)

2, y

2, 1.73

(b)

x, 3

4, 3

18. y

(2, 32 (

x

−2

9

(1, −4)

1

−3 −2 −1 −1

1

2

(− 2, − 32 (



6

−6

(3, 1)

(−3, −1)

5  4

3 | 1.73

(−0.5, 2.47) −9

2

3



52

x5  5 x

(1, 3)

3

y

(a)

0.5, y

(b)

x,  4

3

0.5, 2.47 1.65,  4 and x,  4

1,  4

INSTRUCTOR S USE ONLY (−1, (−1, 1, −3) − 3))

© 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

4

NOT FOR SALE

Chapter P

Preparation paration for Calc Calculus

2x  5

19. y

5; 0,  5

25. y

2 x 5x

y-intercept: y

2 0  5

x-intercept: 0

2x  5

y-intercept: None. x cannot equal 0.

5

2x

x-intercept: 0

x

5; 2

52 , 0

4x2  3

20. y

y-intercept: y

4 0  3

x-intercept: 0

4 x2  3

2

3

3; 0, 3

4 x2

26. y

2 x 5x

0

2

x

4; 4, 0

x 2  3x

3 x

 1

2

02  3 0

y-intercept: y

ª¬3 0  1º¼

None. y cannot equal 0.

y-intercept: y

02  0  2

y

2; 0,  2

22. y

2

0

0

x

2, 1; 2, 0 , 1, 0

x

x

 2 x  1

x  4x 0; 0, 0

x-intercepts: 0

x3  4 x

x

0, r 2; 0, 0 , r 2, 0

x 24. y

x

 1

y-intercept: y y x-intercept: 0 x

0; 0, 0

x 16  x 2

28. y

2x 

x-intercept:

2 0 

0

1; 1, 0

2x  x2  1

3x 2

1

x2

1 3

x

r

1

x

x2  1 Note: x

02  1



x2  1

x2  1

4x2

x2  1

 1

0; 0, 0

1; 0, 1

2x

4  x 4  x 0, 4,  4; 0, 0 , 4, 0 ,  4, 0

x

0

x2  1

y

x

0  1 02 1; 0, 1

0; 0, 0

x

y-intercept: y

x 16  x 2 0 16  02

0

x-intercept: x 2 0  x 2  4 0

x x  2 x  2

0

0

y

0

x-intercepts: 0

2

y-intercept: 02 y  02  4 y

03  4 0

y

y-intercept: y

3x  1 x x  3 2 3x  1 0,  3; 0, 0 , 3, 0

27. x 2 y  x 2  4 y

3

y-intercept: y 2

23. y

x 2  3x

x-intercepts: 0

x2  x  2

x-intercepts: 0

2

0; 0, 0

y

x2  x  2

21. y

x

3 3 3 § 3 ;¨ , 3 ¨© 3

· 0 ¸¸ ¹

3 3 is an extraneous solution.

29. Symmetric with respect to the y-axis because

y

 x 2

6

x 2  6.

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE Section P.1

x2  x

30. y

31. Symmetric with respect to the x-axis because

 y 2

Symmetry: None y

32. Symmetric with respect to the origin because

 y

3

1

x  x

−1

2

 32 x  6

42. y

Intercepts: 0, 6 , 4, 0 Symmetry: None

10.

xy 2

4

y 8

x 3

6

No symmetry with respect to either axis or the origin.

4   x

xy 

2

4  x2

2

(4, 0) −2

0 0.

4

2

(8, 0) x

−2 −2

x2 is symmetric with respect to the y-axis x 1

 x 2  x  1

x2 . 2 x 1

 x 3  x

8

10

(0, − 4) −8

44. y

x  x is symmetric with respect to the y-axis   x

4

− 10

3

3

2

−6

2

 x

x 8

y

x . x2  1

because y

6

Symmetry: none

2

39. y

4

Intercepts: 8, 0 , 0,  4

1

because y

1x 2

43. y

x

y

2 −2

37. Symmetric with respect to the origin because

 x 2

(0, 6)

4

36. Symmetric with respect to the origin because

 x  y 

3

−1

34. Symmetric with respect to the x-axis because

x  y

x 2

x3  x.

33. Symmetric with respect to the origin because  x  y xy 4.

38. y

( 23 , 0(

3

y

y

(0, 2)

2

 x   x

y

35. y

23 , 0

Intercepts: 0, 2 ,

x3  8 x.

y2

5

2  3x

41. y

No symmetry with respect to either axis or the origin.

Graphs and Models Graph

x3  x .

2x 3

1





Intercepts: 0, 1 ,  32 , 0 Symmetry: none y

40. y  x

3 is symmetric with respect to the x-axis

2

because y  x

3

y  x

3.

(0, 1)

( 32 , 0)

x −1

1

2

−1 −2

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

6

NOT FOR SALE

Chapter P

Preparation paration for Calculus Calc

9  x2

45. y

x3  2

49. y





Intercepts: 0, 9 , 3, 0 , 3, 0

Intercepts:  3 2, 0 , 0, 2

Symmetry: y-axis

Symmetry: none

y 10

y

(0, 9)

5 4

6

3

4

(0, 2)

2

(−3, 0) −6 −4 −2

(3, 0) x 2

−2

4

6

x

−3 −2

x2  3

46. y

1

(− 3 2, 0)

1

−1

2

3

x3  4 x

50. y

Intercepts: 0, 0 , 2, 0 , 2, 0

Intercept: (0, 3) Symmetry: y-axis

Symmetry: origin

y

y 12

3

9

(−2, 0)

(0, 0)

−3

−1

(0, 3) 3

x

47. y

 3

−1

x

3

−2

x

−3

−6

(2, 0)

1

−3

6

2

51. y

x 5

x

Intercepts: 3, 0 , 0, 9

Intercepts: 0, 0 , 5, 0

Symmetry: none

Symmetry: none

y

y

12

3

10 8

2

(0, 9)

(− 5, 0)

(0, 0) x

−4 −3 −2 −1

1

2

2 − 10 − 8 −6

x

(−3, 0)

−2

2

−4

x 2 x  1

2x2  x

48. y

−3

4

Intercepts: 0, 0 ,



 12 ,



0

Symmetry: none

52. y

25  x 2

Intercepts: 0, 5 , 5, 0 , 5, 0 Symmetry: y-axis

y

y 5

7 6

4 3 2

(− 12 , 0)

1

(− 5, 0)

(0, 0) x

−3

−2

−1

1

2

3

4 3 2 1

(0, 5)

(5, 0) x

−4 −3 −2 −1

1 2 3 4 5

−2 −3

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE Section P.1

53. x

y3

Graphs and Models Graph

7

6 x

57. y

Intercepts: 0, 6 , 6, 0 , 6, 0

Intercept: (0, 0) Symmetry: origin

Symmetry: y-axis

y

y

4 3

8

2

6

(0, 0)

4 x

− 4 − 3 −2 −1

1

2

3

2

(−6, 0)

4

(0, 6) (6, 0) x

−8

−2

−4 −2 −2

−3

−4

−4

−6

4

2

6

8

−8

54. x

y2  4

Intercepts: 0, 2 , 0,  2 ,  4, 0

58. y

6 x

Intercepts: (0, 6), (6, 0)

Symmetry: x-axis

Symmetry: none

y

y 3

8

(0, 2)

(0, 6)

(−4, 0) −5

−2

x

−1

1

4

(0, −2)

2

(6, 0)

−3

x 2

55. y

8 x

59. y 2  x y2

Intercepts: none

y

Symmetry: origin

4

6

8

9 x 9 r

x9

Intercepts: 0, 3 , 0,  3 , 9, 0

y 8

Symmetry: x-axis

6 4

4

(0, 3)

2 x −2

2

4

6

(− 9, 0)

8

−11

1

(0, −3) −4

56. y

10 x2  1

60. x 2  4 y 2

Symmetry: y-axis

4  x2 2

Symmetry: origin and both axes

y

Domain: >2, 2@

12

(0, 10)

2

(0, 1)

(− 2, 0) −3

(2, 0) 3

2 − 6 − 4 −2

r

Intercepts: 2, 0 , 2, 0 , 0, 1 , 0, 1

Intercept: (0, 10)

10

4 Ÿ y

(0, −1) x 2

4

6

−2

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

Chapter P

8

61. x  3 y 2

Preparation paration for Calculus Calc

6

65. x 2  y

6 Ÿ y

6  x2

x  y

4 Ÿ y

4 x

6 x

3y2

6 x

6 x 3

r

y





Intercepts: 6, 0 , 0,

2 , 0, 

2



Symmetry: x-axis

4 x

0

x2  x  2

0

x

x

2, 1

 2 x  1

The corresponding y-values are y

3

( 0,

2)

y (6, 0)

−1

8

( 0, −

66.

62. 3x  4 y 2

8 3x  8

4 y2

r

y Intercept:

3x 4

2

8, 3

0

Symmetry: x-axis

x

3  y2 Ÿ y2

y

x 1

3 x

x

3 x

x2  2x  1

( 83 , 0)

x  y

8 Ÿ y

8 x

4x  y

7 Ÿ y

4x  7

x

1 or x

The corresponding y-value is y

5.

Point of intersection: (3, 5) 4 Ÿ y 10 Ÿ y

2 for x

1

2 .

 4 x  10 2  4 x  10

5  x2

1Ÿ y  1

x 1

x

5 x

x  2x  1

0

2x2  2 x  4

x

1 or x

2

2

2 x  1 x  2

2

1 for x

1

2 .

Points of intersection: 1,  2 , 2, 1 68. x 2  y 2

25 Ÿ y 2

25  x 2

3 x  y

15 Ÿ y

25  x

2

3 x  15

3 x

25  x

2

9 x  90 x  225

 15

2

2

7x

14

0

10 x 2  90 x  200

x

2

0

x 2  9 x  20

0

x

x

 4 or x

The corresponding y-value is y

2 for x

The corresponding y-values are y and y

3x  4 2  4 x  10 2

5 Ÿ y2

2

x

3x  4 2 3x  4

2

5  x2

5x

4x  2 y

x  1 x  2

1 for x

x  y

4x  7

64. 3x  2 y

2

x2  x  2

67. x 2  y 2

−6

3

3 x

Points of intersection: 1,  2 , 2, 1

12

15

 1

0

and y

−6

2 and

1 .

The corresponding y-values are y

6

8 x

5 for x

2 for x

Points of intersection: 2, 2 , 1, 5

2)

−3

63.

2

1.

Point of intersection: 2, 1

 5 x  4 5

The corresponding y-values are y and y

0 for x

3 for x

 4

5 .

Points of intersection:  4, 3 , 5, 0

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE Section P.1

Graphs Graph and Models

72. Analytically,

y

x3

y

x

y

x4  2 x2  1

x3

x

y

1  x2

x3  x

0

1  x2

69.

x x  1 x  1 x

0

1, or x

0, x

1

The corresponding y-values are 1 for x y 0 for x 0 , y y

1 for x

1 , and

1 .

x4  2 x2  1

0

x4  x2

0

x 2 x  1 x  1

x

1, 0, 1.

Points of intersection: 1, 0 , 0, 1 , 1, 0 y = x 4 − 2x 2 + 1

Points of intersection: 0, 0 , 1, 1 , 1, 1

y

x  4x

y

 x  2

x  4x

 x  2

70.

x

x3  3x  2

0

 1 x  2

0

2

(0, 1) (−1, 0)

3

(1, 0)

−2

y = 1 − x2

x 6

73. y

 x2  4 x

y

2

1 or x

2

−3

3

3

x

9

4

The corresponding y-values are y 3 for x 1 and y 0 for x

2 .

Points of intersection: 1,  3 , 2, 0

y=

x+6

(3,

3)

(− 2, 2)

−7

2

− x 2 − 4x

y=

−2

71. Analytically,

y

x3  2 x 2  x  1

y

 x 2  3x  1

x3  2 x 2  x  1

 x 2  3x  1

x3  x 2  2 x

0

x x  2 x  1

0

x

x6

Analytically,

x6  3 x  2

0

x

y = x3 − 2x2 + x − 1

74. y

y

 x2  4 x 0

1, 0, 2.



3 | 3, 1.732

 x2  4x

x2  5x  6

x

Points of intersection: 1,  5 , 0, 1 , 2, 1 4



Points of intersection: 2, 2 , 3,

3,  2.

 2x  3  6 6 x 7

−4

(2, 1)

(0, −1)

6

y=6−x

(1, 5)

(−1, −5)

(3, 3) −8

−4

8

y = − x2 + 3x − 1

−1

y = −⏐2x − 3⏐+ 6

Points of intersection: (3, 3), (1, 5) Analytically,  2 x  3  6 2x  3

2x  3 x

x or 2 x  3 3 or

x

6 x x

x 1.

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

10

Chapter P

NOT FOR SALE

Preparation paration for Calculus Calc

75. (a) Using a graphing utility, you obtain

76. (a) Using a graphing utility, you obtain

0.027t  5.73t  26.9. 2

y (b)

y (b)

250

−5

0.77t 2  2.1t  4

240

35

18

0

−50

0

The model is a good fit for the data. (c) For 2010, t 40 and y 212.9. C

77.

5.5 x  10,000

5.5 x

2

30.25 x 0

The model is a good fit for the data. (c) For 2015, t

25 and y | 538 million subscribers.

R 3.29 x

3.29 x

 10,000

2

10.8241x 2  65,800 x  100,000,000 10.8241x 2  65,830.25 x  100,000,000 Use the Quadratic Formula.

x | 3133 units

The other root, x | 2949, does not satisfy the equation R

C.

This problem can also be solved by using a graphing utility and finding the intersection of the graphs of C and R. 78. y

81. (a) If (x, y) is on the graph, then so is  x, y by y-axis

10,770  0.37 x2

symmetry. Because  x, y is on the graph, then so

400

is  x,  y by x-axis symmetry. So, the graph is

0

symmetric with respect to the origin. The converse is x3 has origin symmetry not true. For example, y but is not symmetric with respect to either the x-axis or the y-axis.

100 0

If the diameter is doubled, the resistance is changed by approximately a factor of 14 . For instance,

(b) Assume that the graph has x-axis and origin symmetry. If (x, y) is on the graph, so is x,  y by

x-axis symmetry. Because x,  y is on the graph,

y 20 | 26.555 and y 40 | 6.36125.

then so is  x,   y

79. Answers may vary. Sample answer:

y

x

x

 4, x

symmetry. Therefore, the graph is symmetric with respect to the y-axis. The argument is similar for y-axis and origin symmetry.

 4 x  3 x  8 has intercepts at 3, and x

 x, y by origin

8.

80. Answers may vary. Sample answer:

y

x  32 x  4 x  52 has intercepts at

x

 32 , x

4, and x

82. (a) v ªBecause y ¬

(b) i ª¬Because y

5. 2

3  x  3 2

3x3  3x

3 x 2  3º ¼ 3 x x  1 x  1 has x-intercepts 0, 0 , 1, 0 , 1, 0 º¼

(c) None of the equations are symmetric with respect to the x-axis 2 (d) ii ªBecause 2  3 ¬

1º and vi ª¬Because ¼

3 (e) i ªBecause 3  x  3  x ¬ 3 i ªBecause 3 0  3 0 (f) ( ¬

3 x 3  3 x

2  3

1º¼

 yº and iv ª¬Because ¼

0º and iv ª¬Because ¼

3

x

3 x

 yº¼

0º¼

INSTRUCTOR USE ONLY 3

0

© 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE Section P.2

83. False. x-axis symmetry means that if  4,  5 is on the

Linear Models and Rate Rates of Change y

87. 4

graph, then  4, 5 is also on the graph. For example,

4,  5 is not on the graph of  4,  5 is on the graph. 84. True. f 4

(0, 3)

y 2  29, whereas

x

11

2

(x, y)

1 −2

f 4 .

x

−1

(0, 0)

2

3

−1

§ b r 85. True. The x-intercepts are ¨ ¨ © § b 86. True. The x-intercept is ¨  , © 2a

b 2  4ac , 2a

· 0 ¸. ¸ ¹

x

2

· 0 ¸. ¹

 0  y  3 2

x

2

 0  y  0 2

2 4 ª x 2  y  3 º ¬ ¼

x2  y 2

4 x 2  4 y 2  24 y  36

x2  y 2

3 x 2  3 y 2  24 y  36

0

x  y  8 y  12

0

2

2

x  y  4 2

2

2

4

Circle of radius 2 and center (0, 4). 88. Distance from the origin x2  y 2

K u Distance from 2, 0 K

x2  y 2

x

 2  y 2 , K z 1 2

K 2 x2  4 x  4  y2

1  K 2 x 2  1  K 2 y 2  4 K 2 x  4K 2

0

Note: This is the equation of a circle!

Section P.2 Linear Models and Rates of Change 1. m

1

y

8. m = −3

2. m

2

3. m

0

4. m

1

1

m=3

(−2, 5)

6

m=0

4

m=3 x −6

−2

2

4

−2

5. m

12

6. m

40 3

2  4 53

9. m

6 2

3

y

7.

m = −2

y 3

m is undefined.

(5, 2) x

−1

m=1

8

(3, 4)

4

2

3

5

6

7

−3 −4

2 x −2

1

−2

6

−6 −4

2 1

m=−3 2

2

4

8 10

(3, −4)

−5

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

12

NOT FOR SALE

Chapter P

Preparation paration for Calculus Calc

7 1 2  1

10. m

6 3

2

14. m

y

(−2, 7)

7

§ 3· § 1· ¨ ¸  ¨ ¸ © 4¹ © 4¹ §7· §5· ¨ ¸¨ ¸ ©8¹ © 4¹

6

1 3  8



8 3

y

5 3

3 2

2

(1, 1)

1

x

−4 −3 −2 − 1

1

3

1

4

( 78 , 34 ) x

−2

16 44

11. m

5 , undefined. 0

1

−1

( 54 , − 14 )

15. Because the slope is 0, the line is horizontal and its equation is y 2. Therefore, three additional points are

The line is vertical y

0, 2 , 1, 2 , 5, 2 .

7

(4, 6)

6

−1

5

16. Because the slope is undefined, the line is vertical and its  4. Therefore, three additional points equation is x

4 3 2

are  4, 0 ,  4, 1 ,  4, 2 .

(4, 1)

1

x −2 −1

1

2

3

5

6

17. The equation of this line is 5  5 53

12. m

0 2

The line is horizontal 1 2

3

4

5

y

3x  10.

18. The equation of this line is

x 1

3 x  1

Therefore, three additional points are (0, 10), (2, 4), and (3, 1).

y

−1 −1

y 7 0

6

y  2

−2

y

−3 −4

2 x  2.

Therefore, three additional points are 3,  4 , 1, 0 ,

(3, −5) (5, − 5)

−6

2 x  2

and (0, 2). 2 1  3 6 1 § 3·   ¨ ¸ 2 © 4¹

13. m

1 2 1 4

19. (a) Slope

2

'y 'x

(b) x 10 ft

y

30 ft

3 2

(− 12 , 23 ) −3

−2

By the Pythagorean Theorem,

(− 34 , 16 ) x 1

−1 −2 −3

1 3

2

x2

3

x

302  102

1000

10 10 | 31.623 feet.

20. (a) m 800 indicates that the revenues increase by 800 in one day.

(b) m 250 indicates that the revenues increase by 250 in one day. (c) m 0 indicates that the revenues do not change from one day to the next.

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

Section P.2

25. x  5 y

y

Population (in millions)

21. (a)

Linear Models and Rat Rate Rates of Change

300

20  15 x  4

y

295 290

Therefore, the slope is m

285 280

t 1

2

3

4

5

Year (0 ↔ 2000)

26. 6 x  5 y

15

y

6x 5

(b) The slopes are: 285.3  282.4 10 288.2  285.3 2 1 291.1  288.2 32 293.9  291.1 43 296.6  293.9 54

3

Therefore, the slope is m

2.9

6 5

and the y-intercept is

0,  3 .

2.9

27. x

4

The line is vertical. Therefore, the slope is undefined and there is no y-intercept.

2.9 2.8

1

28. y

The line is horizontal. Therefore, the slope is m the y-intercept is 0, 1 .

2.7

The population increased least rapidly from 2004 to 2005.

29.

3x 4

y

0 and

3

3x  12

4y

r

3x  4 y  12

0

100 80

y

60

5

40

4

20

(0, 3) 2

t 5

10 15 20 25 30

1 x

(b) The slopes are: 74  57 10  5 85  74 15  10 84  85 20  15 61  84 25  20 43  61 30  25

−4 −3 −2 −1

1

3.4

30. The slope is undefined so the line is vertical. 2.2

x x 5

0.2

5 0 y 1

 4.6

x −4 −3 −2 −1

3.6

(−5, −2)

−1

1

−2 −3

The rate changed most rapidly between 20 and 25 seconds. The change is  4.6 mi h sec. 23. y

 15 and the y-intercept is

(0, 4).

275

22. (a)

13

−4 −5

4x  3

the slope is m 24.  x  y

y

4 and the y-intercept is 0,  3 .

1 x 1

The slope is m

1 and the y-intercept is (0, 1).

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

14

31.

NOT FOR SALE

Chapter P y

2x 3

3y

2x

Preparation paration for Calculus Calc

y 0

2x  3y

0

80 2 40 2 x  0

m

35.

y

y

2x

0

2x  y

4 y

3

(4, 8)

8

2

6

(0, 0)

4

x 1

2

3

4

2

−1

(0, 0) −4

y

4

y 4

0

32.

2

y 0

5

6

5 x

y

(0, 4)

5x  y

3

4

50 5 1  0 5 x  0

m

36.

y

x

−2

0

2

y

1

(−1, 5) −3

−2

1

4

2

3 x  3

33. y  2 y  2

1

3x  9

x

3x  11

0

3x  y  11

3 2 1 x 1

2

3

4

5

6

2

3

2

y 1

2 x  2

y 1

2x  4 2x  y  3

0

(3, − 2)

1

1  3 20

37. m

y

−2

(0, 0)

−3 −2 −1 −1

y

−2 −1 −1

5

x

−1

−3

y

−4 −5

2

(2, 1)

1

 53 x  2

y 4

34.

5 y  20

3 x  6

3x  5 y  14

x −2 −1 −1

2

3

4

5

−2 −3

(0, − 3)

0

y 5 4

(−2, 4) 2 1 x −3

−2

−1

1

2

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE Section P.2

7  2 1  2

38. m

9 3

3

3 x  2

y  2

3 x  2

y  2 y

3x  4

0

3x  y  4

Linear Models and Rat Rate Rates of Change 83 66

41. m

15

5 , undefined 0

The line is horizontal. x

6

x6

0

y

(6, 8)

8

y

6

8

4

(1, 7)

(6, 3) 2

6 4

x

−2

2

4

8

−2

x −6 −4

2

(−2, −2)

4

6

−4

80 25

39. m



8 3

y 8 x  3 y  40

y  2

x

−1

1

43. m

(5, 0)

x

6 7 8 9

62 3  1

y 

4 4

1

y 2

1 x  1

y 2

x  1

(1, −2)

4

(3, −2)

7 3  2 4 1 0 2 3 4

11 4 1 2

11 2

11 x  0 2 11 3 x  2 4 22 x  4 y  3

y 0

y

0 4

y

3

( 12 , 72 )

2

7

1

6

(− 3, 6)

3

−4

(2, 8)

x  y 3

2

−1

−2

40. m

0

1

−3

1 2 3 4

0

y

y

−1

0 2

2

y

8  x  5 3 8 40  x 3 3 0

y 0

9 8 7 6 5 4 3 2 1

2  2 31

42. m

( 0, 34 ) x

−4 −3 −2 −1

5

1

2

3

4

3

(1, 2)

2 1

x −4 −3 −2 −1

1

2

3

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

16

NOT FOR SALE

Chapter P

Preparation paration for Calculus Calc

§ 3· § 1· ¨ ¸  ¨ ¸ © 4¹ © 4¹ §7· §5· ¨ ¸¨ ¸ ©8¹ © 4¹

44. m

1 3  8



8 3

8 § 5· ¨x  ¸ 3© 4¹ 32 x  40

1 y  4 12 y  3 32 x  12 y  37

0

3 2

( 78 , 34 )

1

x −2

−1

1

x

3

x 3

0

45.

50.

y 2 1

(3, 0) 1

x y  a a 1 2  a a 3 a a

2

x

2 0

1 1

x y  a a 3 4  a a 1 a a

3 Ÿ x y

3

x  y 3

0

1 1 1 1Ÿ x  y x  y 1

4

−1

1 0

3

51. y

−2

1

1

( 54 , − 14 )

−1

1

3x  y  2

49.

y

x y  2 2  3 y 3x  2 2 3x  y

48.

y

2

46. m



b a

y b x y a x y  a b

1 x

−3 −2 −1

1

2

3

4

5

−2

b xb a

−4 −5 −6

b 52. x

1

4 y

y 3 2

(0, b) 1 x 1

2

3

5

−1

(a, 0)

−2 x

53. y 47.

x y  2 3 3x  2 y  6

2 x  1 y

1

3

0 1 x −2

−1

1

2

INSTRUCTOR USE S ONLY −1 −1

© 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE Section P.2

1

1x 3

54. y

Linear Models and Rat Rate Rates of Change

59. (a)

17

5

y

−5

5

2 1 x −3 −2 − 1

−5

3

(0, −1)

The lines do not appear perpendicular.

−2

4

(b)

−3 −4

−6

55. y  2

3 2

x



3x 2

y

6

 1 −4

1 2

The lines appear perpendicular.

y

The lines are perpendicular because their slopes 2 and  12 are negative reciprocals of each other. You must use

4 3 2 1 x − 4 − 3 −2

1

2

3

4

−2

a square setting in order for perpendicular lines to appear perpendicular. Answers depend on calculator used. 60. ax  by

−3 −4

56. y  1

3 x  4

y

3 x  13 y

4

(a) The line is parallel to the x-axis if a b z 0.

0 and

(b) The line is parallel to the y-axis if b a z 0.

0 and

(c) Answers will vary. Sample answer: a b 8.

16 12

5 x  8 y

4

y

1 8

x − 16 − 12 − 8

4

−4

8

2x  3

5x  2 y

4

y

1 2

y

(e) a

1 x −2

−1

5 2

and b

−1

5x 2

 3y

4

−2

5x  6 y

8

2

5x 8



1 2

Answers will vary. Sample answer: a b 2.

0

y

 4

(d) The slope must be  52 .

−8

57. 2 x  y  3

5 x

5 and

3

5 x  4

5 and

 52 x  2

3.

−3

61. The given line is vertical. 58. x  2 y  6

y

0  12 x

3

(a) x

7, or x  7

0

(b) y

2, or y  2

0

62. The given line is horizontal.

y 4 2

− 10

−8

−6

(a) y

0

(b) x

1, or x  1

0

x

−2

−4

INSTRUCTOR T USE ONLY −6

© 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

18

NOT FOR SALE

Chapter P

63. 4 x  2 y

Preparation paration for Calculus Calc

3 2x 

y m (a) y  1

2 2 x  2

y 1

V

x  2

x  2y  4

m

(2, 4)

−3

1 x  3

y 2

x  3

You can use the graphing utility to determine that the points of intersection are (0, 0) and (2, 4). Analytically,

y 2 0

65. 5 x  3 y

0

0 Ÿ 0, 0

x

2 Ÿ y

4 Ÿ 2, 4 .

The slope of the line joining (0, 0) and (2, 4) is m 4  0 2  0 2. So, an equation of the line is y 0 5 3

24 y  21

x  43 72. y



 53 x 

7 8

40 y  35

3 4



y

 34 x 

m

 34 y 5

 34 x  3

4 y  20

3 x  12

0

x

4x 3

9

 4 

 x2  2x  3

2 x2  6 x

0

2 x x  3

0

x

0 Ÿ y

3 Ÿ 0, 3

x

3 Ÿ y

0 Ÿ 3, 0 .

The slope of the line joining (0, 3) and (3, 0) is m 0  3 3  0 1. So, an equation of the line is

0 4 3

(3, 0)

x2  4 x  3

 34 x  4

3x  4 y  8

(0, 3) −9

−6

7 4

y  5

 x2  2x  3

You can use the graphing utility to determine that the points of intersection are (0, 3) and (3, 0). Analytically,

3 x  7

3 y  15

x 2  4 x  3, y

0

7

y 5

2 x.

6

24 x  18

24 x  40 y  53

(b) y  5

2 x  0

40 x  24 y  9 y 

4y

y

40 x  30

0

66. 3x  4 y

0 0 Ÿ y

7 8

(b)

2 x x  2 x

5 3

y 

0

x  y 5

5x 3

m

2x2  4x

x 3

0

y

4x  x2

x2

1 x  3

(b) y  2

6

(0, 0) −1

1 y 2

x  y 1

4.

5600t  267,400

5

0

x  7

(a)

8.

1600t  30,000

245,000 when t

5600 t  4  245,000

71.

7

y

17,200 when t

1600 t  8  17,200

70. The slope is 5600. V

 12 x  2

y 1 2y  2

(a)

V

2x  y  3

(b)

(a)

69. The slope is 1600. V

2x  4

0

64. x  y

68. The slope is 4.5. V 156 when t 4. V 4.5 t  4  156 4.5t  138

3 2

y 3

16 3

y

1 x  0  x  3.

4 x  16 4 x  3 y  31

67. The slope is 250. V 1850 when t 8. V 250 t  8  1850 250t  150.

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE Section P.2

10 2  1

73. m1



2 3

m1 z m2 The points are not collinear. 6  4 70 11  4 m2 5  0 m1 z m2

10 7 7  5



74. m1

19

77. Equations of altitudes: a b y x  a c x b a b y  x  a c Solving simultaneously, the point of intersection is § a 2  b2 · ¨ b, ¸. c © ¹

1

2  0 2  1

m2

Linear Models and Rate Rat Rates of Change

y

(b, c)

The points are not collinear. (a, 0)

75. Equations of perpendicular bisectors:

c y  2

a  b§ a  b· ¨x  ¸ c © 2 ¹

c 2

a  b§ b  a· ¨x  ¸ c © 2 ¹

y 

x

(− a, 0)

§b c· 78. The slope of the line segment from ¨ , ¸ to © 3 3¹

Setting the right-hand sides of the two equations equal and solving for x yields x 0. Letting x 0 in either equation gives the point of intersection: § a 2  b 2  c 2 · ¨ 0, ¸. 2c © ¹

§ a2  b2 · ¨ b, ¸ is: c © ¹

m1

3a 2  3b2  c 2 3c 2b

This point lies on the third perpendicular bisector, x 0.

§b c· The slope of the line segment from ¨ , ¸ to © 3 3¹

(b, c)

m2

( a +2 b , 2c )

b 3

(a, 0)

m1 76. Equations of medians:

y y y

ª  a 2  b 2  c 2 2c º  c 3 ¬ ¼ 0  b 3

3a 2  3b2  3c 2  2c 2 6c

x

(−a, 0)

3a 2  3b 2  c 2 2bc

m2

Therefore, the points are collinear.

c x b

79. Find the equation of the line through the points (0, 32) and (100, 212).

c x  a 3a  b c x  a 3a  b

m F  32 F

§b c· Solving simultaneously, the point of intersection is ¨ , ¸. © 3 3¹ y

( b −2 a , 2c )

3

3a 2  3b 2  c 2 2bc

§ a 2  b2  c 2 · ¨ 0, ¸ is: 2c © ¹

y

( b −2 a , 2c )

ª a 2  b 2 cº  c 3 ¬ ¼ b  b 3

180 9 100 5 9 C  0 5 9 C  32 5





or C

1 9

5 F

 160

5F  9C  160 0 72q, C | 22.2q. For F (b, c)

80. C

(

a + b, c 2 2 x

)

For x

0.48 x  175 137, C

0.48 137  175

$240.76.

INSTRUCTOR NSTR NST N NS ST S TR USE ONLY ((− −a a,, 0) 0

(0, 0) (a, (a, 0) 0

© 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

20

NOT FOR SALE

Chapter P

81. (a) W1

W2 (b)

Preparation paration for Calculus Calc

0.75 x  14.50

84. (a) y

18.91  3.97 x

1.30 x  11.20

x

quiz score, y

25

(b)

test score

100

(6, 19)

−2

10

0

0

0.75 x  14.50 3.3 6

1.30 x  11.20 0.55 x

(c) If x

19.

(c) When six units are produced, the wage for both options is $19.00 per hour. Choose option 1 if you think you will produce less than six units per hour, and choose option 2 if you think you will produce more than six.

86.4.

(d) The slope shows the average increase in exam score for each unit increase in quiz score. (e) The points would shift vertically upward 4 units. The new regression line would have a y-intercept 4 greater than before: y 22.91  3.97 x. 85. The tangent line is perpendicular to the line joining the point (5, 12) and the center (0, 0). y

(5, 12) 8 4 −8 −4

82. (a) Depreciation per year: 875 5

18.91  3.97 17

17, y

x

1.30 6  11.20

y

20 0

Using a graphing utility, the point of intersection is (6, 19) Analytically, W1 W2

x

(0, 0) 8

16

−8

$175 −16

875  175 x

y

Slope of the line joining (5, 12) and (0, 0) is

where 0 d x d 5.

12 . 5

The equation of the tangent line is

1000

5 12

y  12

5 x 12

y 0

5 x  12 y  169

6

x  5 

169 12

0.

0

875  175 2

(b) y (c)

200 175 x

86. The tangent line is perpendicular to the line joining the point 4,  3 and the center of the circle, (1, 1).

$525

875  175 x 675

y

x | 3.86 years

4 2

83. (a) Two points are (50, 780) and (47, 825). The slope is 825  780 45 m 15. 47  50 3 p  780 p

−6

(b)

15 x  1530

4

Slope of the line joining (1, 1) and 4,  3 is

13 1 4

4 . 3

Tangent line: 1 1530  p 15

y 3

50

y 0

0

1600

855, then x

45 units. 1 1530  795 5 15

3 x  4 4 3 x6 4 3 x  4 y  24

87. 4 x  3 y  10

0

If p

2

(4, −3)

or x

x −2

−6

15 x  50 15 x  750  780

−2

(1, 1)

0 Ÿ d

4 0  3 0  10 42  32 10 5

INSTRUCTOR USE ONLY (c) If p

795, then x

49 units.

2

© 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE Section P.2

88. 4 x  3 y  10

89. x  y  2

4 2  3 3  10

0 Ÿ d

0 Ÿ d

42  32

93. If A

If B

1 0  1 1  5

1 0 2

d

7

2

3  4

A2  B 2

Ay  Ay1 Bx1  Ay1

Bx  Ay

2 2.

1 is 1, 1 . The

A2  B 2

3  4  10 5

9 . 5

C A. The distance to x1 , y1 is

0 is the vertical line x Ax1  By1  C

2

0 is

.

.

The equation of the line through x1 , y1 perpendicular to Ax  By  C B x  x1 A Bx  Bx1

4 2

C B. The distance to x1 , y1 is

(Note that A and B cannot both be zero.) The slope of the line Ax  By  C

y  y1

2

3 1  4 1  10 2

Ax1  By1  C

Ax1  C A

2

distance from the point 1, 1 to 3x  4 y  10

0 is the horizontal line y

By1  C B

15

1 1 2

92. A point on the line 3x  4 y

5 2 2

1 6  0 2  1

0, then Ax  C § C · x1  ¨ ¸ © A ¹

d

12  12

0, then By  C § C · y1  ¨ ¸ © B ¹

d

d

0 Ÿ d

21

91. A point on the line x  y 1 is (0, 1). The distance from the point (0, 1) to x  y  5 0 is

7 5

1 2  1 1  2 5 2

90. x  1

Linear Models and Rat Rate Rates of Change

0 is  A B.

0 is:

The point of intersection of these two lines is: Ax  By Bx  Ay

B x1  ABy1

 B x

1 2

 AC  B 2 x1  ABy1

By adding equations 1 and 2

x

 AC  B x1  ABy1 A2  B 2

Ÿ A2 x  ABy Bx1  Ay1 Ÿ B 2 x  ABy

 AC

C

A

2

2

2

2

Ax  By Bx  Ay

C

Ÿ

ABx  B 2 y Bx1  Ay1 Ÿ  ABx  A2 y

A2  B 2 y y

3 4

 BC  ABx1  A2 y1

 BC  ABx1  A2 y1 By adding equations 3 and 4  BC  ABx1  A2 y1 A2  B 2

§  AC  B 2 x1  ABy1  BC  ABx1  A2 y1 · , ¨ ¸ point of intersection A2  B 2 A2  B 2 © ¹

The distance between x1 , y1 and this point gives you the distance between x1 , y1 and the line Ax  By  C 2

d

ª  AC  B 2 x1  ABy1 º ª  BC  ABx1  A2 y1 º  x1 »  «  y1 » « 2 2 2 2   A B A B ¬ ¼ ¬ ¼ 2

ª  AC  ABy1  A2 x1 º ª  BC  ABx1  B 2 y1 º « »  « » 2 2 A  B A2  B 2 ¬ ¼ ¬ ¼ ª A C  By1  Ax1 º ª B C  Ax1  By1 º « »  « » 2 2 A  B A2  B 2 ¬ ¼ ¬ ¼ 2

2

0.

2

2

A2  B 2 C  Ax1  By1 2 2 A2  B 2

Ax1  By1  C A2  B 2

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

22

NOT FOR SALE

Chapter P

Preparation paration for Calculus Calc

mx  4 Ÿ mx  1 y  4

94. y

m3  1 1  4

Ax1  By1  C

d

0

m  1

A2  B 2

2

3m  3

m2  1

2

1. In this case, the line y

The distance is 0 when m

 x  4 contains the point (3, 1).

8

−9

9

(−1, 0) −4

95. For simplicity, let the vertices of the rhombus be (0, 0), (a, 0), (b, c), and a  b, c , as shown in the figure. The

slopes of the diagonals are then m1

c and a b

c . Because the sides of the rhombus are ba

m2

y2*  y1* x2*  x1*

y2  y1 x2  x1

y

b 2  c 2 , and you have

equal, a 2

c2 2 b  a2

c c ˜ a b ba

m1m2

97. Consider the figure below in which the four points are collinear. Because the triangles are similar, the result immediately follows.

c2 c 2

(x 2 , y2 )

1.

Therefore, the diagonals are perpendicular.

(x *2 , y*2 )

(x1, y1 ) (x *1, y*1 )

y x

(b, c)

1 m2 , then m1m2

98. If m1

(a + b, c)

1. Let L3 be a line with

slope m3 that is perpendicular to L1. Then m1m3 x

(0, 0)

m3 Ÿ L 2 and L 3 are parallel. Therefore,

So, m2

(a , 0)

1.

L 2 and L1 are also perpendicular. 96. For simplicity, let the vertices of the quadrilateral be (0, 0), (a, 0), (b, c), and (d, e), as shown in the figure. The midpoints of the sides are §a · §a  b c · §b  d c  e· §d e· , ¸, ¨ , ¨ , 0 ¸, ¨ ¸, and ¨ , ¸. 2¹ © 2 2 ¹ ©2 ¹ © 2 © 2 2¹

The slope of the opposite sides are equal: c 0 2 a b a  2 2 e 0 2 a d a  2 2

c e  2 b d  2 c ce  2 2 b b  2 2

e 2 d 2

d

c b



99. True. ax  by

c1 Ÿ y

bx  ay

c2 Ÿ y

m2



a c  x  1 Ÿ m1 b b b c2 Ÿ m2 x a a



a b

b a

1 m1

100. False; if m1 is positive, then m2

1 m1 is negative.

e a d

Therefore, the figure is a parallelogram. y

(d, e)

( b +2 d ,

c+e 2

)

(b, c)

( d2 , 2e )

(a +2 b , 2c )

INSTRUCTOR S USE ONLY x

(0, 0)

( a2 , 0)

((a, a, 0)

© 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE Section P.3

Functions and T Their Graphs

23

Section P.3 Functions and Their Graphs 1. (a) Domain of f: 4 d x d 4 Ÿ >4, 4@

4. (a) f 4

Range of f: 3 d y d 5 Ÿ >3, 5@

(b) f 11

Domain of g: 3 d x d 3 Ÿ >3, 3@

(c) f 8

Range of g: 4 d y d 4 Ÿ >4, 4@

(d) f x  ' x

(b) f 2 g 3

1

g x for x

(d) f x

2 for x

1

(c) g 2

(e) g x

0 for x

1, 1 and 2

(d) g t  1

(b) g

1

6. (a) g 4

Range of g: 4 d y d 2 Ÿ > 4, 2@

(c) g c

5  02

5

5

5

5  2

(d) f x

2 for x

4, 4

(e) g x

0 for x

1

3. (a) f 0

7 0  4

(b) f 3 (c) f b

2 and x

7 b  4

(d) f x  1

f x  'x  f x 'x

10.

f x  f 1 x 1

11.

f x  f 2 x2

7b  4 7 x  11

3

3 x  1  3  1 x 1

1

3 x  1 x 1

c 3  4c 2

 4 t  4  4

t

 4 t

2 2

§ § S ·· cos¨ 2¨  ¸ ¸ © © 4 ¹¹ § § S ·· cos¨ 2¨ ¸ ¸ © © 3 ¹¹

1

§ S· cos¨  ¸ © 2¹ cos

2S 3



0

1 2

0

§ 5S · sin ¨ ¸ © 4 ¹

§ 2S · (c) f ¨ ¸ © 3 ¹

§ 2S · sin ¨ ¸ © 3 ¹

3

t 3  8t 2  16t cos 0

§ 5S · (b) f ¨ ¸ © 4 ¹

2

 45 8

t

sin S

x 3  3 x 2 ' x  3 x 2 'x  ' x  x 3 'x

 52



2 2

3 2

3 x 2  3 x'x  'x , 'x z 0 2

3, x z 1



x 1 1 x2

1 x 1 1 ˜  2 x  1 1 

x f x  f 1 x 1

5  t 2  2t  1

2

9 4

cos 2 0

8. (a) f S

 'x  x3 'x

1

0

c 2 c  4

§S · (c) f ¨ ¸ ©3¹ 25

x

0

54

2

§ S· (b) f ¨  ¸ © 4¹

7 x  1  4

55

2

4 2 4  4

7. (a) f 0

4

4

7 3  4

2

5  t  1

2

g x for x

4

x  'x  5

(d) g t  4

2

(c) f x

16

3, undefined

32 32 32  4

(b) g

g 3

1

4  2t  t 2

Domain of g: 4 d x d 5 Ÿ >4, 5@ (b) f 2

1

8  5

5

(c) f x

Range of f: 4 d y d 4 Ÿ > 4, 4@

12.

11  5

5. (a) g 0

4

2. (a) Domain of f: 5 d x d 5 Ÿ >5, 5@

9.

4  5

x3  x  0 x 1

x 1 x 1

x x  1 x  1 x 1

2 x

x  2



x 11

x 1





1

x 11



x 1

, x z 2

x x  1 , x z 1

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE

24 Chapter P 13. f x

Preparation aration for Calculus Calcu

22. f x

4x2

Domain: f, f

x 2  3x  2 t 0

x

Range: >0, f 14. g x

 2 x  1 t 0

Domain: x t 2 or x d 1 x2  5

Domain: f, 1@ ‰ >2, f

Domain: f, f

15. g x

1  cos x z 0

6x

cos x z 1

Domain: 6 x t 0

Domain: all x z 2nS , n an integer

x t 0 Ÿ >0, f

1 z 0 2 1 sin x z 2

x 3

sin x 

Domain: x  3 t 0 Ÿ >3, f Range: f, 0@ 17. f t

St 4

z

sec

2n

Domain: all x z

St 4

Range: f,  1@ ‰ >1, f

 2nS ,

5S  2nS , n integer 6

x3 z 0 x3 z 0 Domain: f,  3 ‰ 3, f

nS , n an integer

1 x 4

26. g x

Range: f, f 19. f x

6

Domain: all x z 3

cot t

Domain: all t

S

1 x3

25. f x

 1 S Ÿ t z 4n  2 2

Domain: all t z 4n  2, n an integer

18. h t

1 sin x  1 2

24. h x

Range: >0, f 

2 1  cos x

23. g x

Range: >5, f

16. h x

x 2  3x  2

2

x2  4 z 0

3 x

x

 2 x  2 z 0

Domain: all x z 0 Ÿ f, 0 ‰ 0, f

Domain: all x z r 2

Range: f, 0 ‰ 0, f

Domain: f,  2 ‰ 2, f

20. g x

27. f x

2 x 1

­2 x  1, x  0 ® ¯2 x  2, x t 0

Domain: f, 1 ‰ 1, f

(a) f 1

Range: f, 0 ‰ 0, f

(b) f 0

2 0  2

2

(c) f 2

2 2  2

6

21. f x

x 

1 x

2 1  1

1

x t 0 and 1  x t 0

(d) f t 2  1

2 t 2  1  2

x t 0 and x d 1

(Note: t 2  1 t 0 for all t)

Domain: 0 d x d 1 Ÿ >0, 1@

Domain: f, f

2t 2  4

INSTRUCTOR USE ONLY Range:  f f, 1 ‰ >2, 2 f

© 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE Section P.3

28. f x

2 °­ x  2, x d 1 ® 2 °¯2 x  2, x ! 1

(a) f 2

2 2

 2

(b) f 0

02  2

2

(c) f 1

12  2

(d) f s 2  2

Functions and T Their Graphs

25

4 x

32. g x

Domain: f, 0 ‰ 0, f

6

Range: f, 0 ‰ 0, f y

3

6 4

2 s 2  2  2 2

2 s 4  8s 2  10

2

x 2

(Note: s 2  2 ! 1 for all s)

4

6

Domain: f, f Range: >2, f 29. f x

33. h x

­° x  1, x  1 ® °¯ x  1, x t 1

(a) f 3

y 3

3  1

4

(b) f 1

1  1

0

(c) f 3

3  1

2

(d) f b 2  1

2 1 x 3

 b 2  1  1

b 2

Domain: f, f

12

Domain: x  6 t 0

34. f x

3

1 x3 4 y

3  4

1

1

5 4

(b) f 0

0 4

2

(c) f 5

5 4

3

(d) f 10

10  5 2

2

Domain: >4, f

1 x

25

−3

−1 −1

1

2

3

Domain: f, f

Range: >0, f 31. f x

9

Range: >0, f

­° x  4, x d 5 ® 2 °¯ x  5 , x ! 5

(a) f 3

6

x t 6 Ÿ >6, f

Range: f, 0@ ‰ >1, f 30. f x

x 6

Range: f, f

4 x

35. f x

Domain: f, f

9  x2

Domain: >3, 3@

Range: f, f

Range: >0, 3@

y

y

8 5

6

4

4

2 1

2

x −4 −3 −2 −1

x −4

−2

2

4

1

2

3

4

−2

INSTRUCTOR USE ONLY −3

© 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

26

NOT FOR SALE

Chapter P

36. f x

Preparation paration for Calculus Calc

x

27

Domain: >2, 2@

18

Range: ª¬2, 2 2 º¼ | >2, 2.83@

9

y-intercept: 0, 2



x-intercept: 

2, 0



t1

4

2, 0( x 1

−1

2

3

0 Ÿ y

x2  4  y

42.

4

−2

t

r

x

0 Ÿ y

x2  4

y is a function of x. Vertical lines intersect the graph at most once.

−3 −4

37. g t

t3

y is not a function of x. Some vertical lines intersect the graph twice.

3

(0, 2)

−4 −3 −2

t2

41. x  y 2

y

(−

d

40.

4  x2

43. y is a function of x. Vertical lines intersect the graph at most once.

3 sin S t y 3

44. x 2  y 2

4

y

r

2 1 t 1

y is not a function of x. Some vertical lines intersect the graph twice.

3

45. x 2  y 2

Domain: f, f

5 cos

46. x 2  y

T

r 16  x 2

16 Ÿ y

16  x 2

y is a function of x because there is one value of y for each x.

2

Domain: f, f

47. y 2

Range: >5, 5@

x2  1 Ÿ y

r

x2  1

y is not a function of x because there are two values of y for some x.

y 5 4 3 2 1

−2 π

16 Ÿ y

y is not a function of x because there are two values of y for some x.

Range: >3, 3@ 38. h T

4  x2

48. x 2 y  x 2  4 y 2π

θ

0 Ÿ y

x2 x  4 2

y is a function of x because there is one value of y for each x.

−5

49. y

20 1 mi min during the first 4 40 2 minutes. The student is stationary for the next 2 minutes. 62 Finally, the student travels 1 mi min during 10  6 the final 4 minutes.

f x  5 is a horizontal shift 5 units to the left.

Matches d.

39. The student travels

50. y

f x  5 is a vertical shift 5 units downward.

Matches b. 51. y

 f  x  2 is a reflection in the y-axis, a

reflection in the x-axis, and a vertical shift downward 2 units. Matches c. 52. y

 f x  4 is a horizontal shift 4 units to the right,

INSTRUCTOR USE ONLY followed ollowed by a reflection in the x-axis. x-axis. Matches a.

© 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE Section P.3

53. y

f x  6  2 is a horizontal shift to the left 6

Functions and T Their Graphs

(f) The graph is stretched vertically by a factor of 14 .

units, and a vertical shift upward 2 units. Matches e. 54. y

27

y

f x  1  3 is a horizontal shift to the right 1 unit,

4 2

and a vertical shift upward 3 units. Matches g.

x −4

−2

2

4

6

55. (a) the graph is shifted 3 units to the left. y −6

4

56. (a) g x

x −6

−4

−2

2

4

f x  4

−2

g 6

f 2

−4

g 0

f 4

−6

1 3

Shift f right 4 units y

(b) The graph is shifted 1 unit to the right. 4

y

3

4

2

(6, 1)

1

2

x −1

x −2

2

4

6

8

1

2

3

5

6

−2

−2

(0, − 3)

−4

−4 −6

(b) g x

(c) The graph is shifted 2 units upward.

f x  2

Shift f left 2 units

y

y

6

4 3

4

2

(0, 1)

2

x

x −4

−2

2

4

−7 −6 −5 −4 −3

6

−1

−2

1

−2 −3

(− 6, − 3)

(d) The graph is shifted 4 units downward. y x −4

7

−2

2

4

(c) g x

−4

f x  4

Vertical shift upwards 4 units

6

−2

y

−4

6

(2, 5)

5

−6

4

−8 2 1

(− 4, 1)

x −5 −4 −3 −2 −1

(e) The graph is stretched vertically by a factor of 3. y x −4

−2

4

1

3

−2

(d) g x

f x  1

Vertical shift down 1 unit

6

y

−2 2

−4

1

−6 −8

2

(2, 0) x

5

4

3

−10

2

1

2

3

−3 −4

INSTRUCTOR USE E ONLY (−4, −4)

−5 −6

© 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

28

Chapter P

NOT FOR SALE

Preparation paration for Calculus Calc

(e) g x

2 f x

g 2

2 f 2

g 4

sin x  S 2  1 is a horizontal shift

58. (a) h x

S 2 units to the left, followed by a vertical shift 1 unit upwards.

2

2 f 4

6

(b) h x

y

(2, 2)

sin x  1 is a horizontal shift 1 unit to the

right followed by a reflection about the x-axis.

2 1 x − 5 − 4 − 3 −2 −1

1

2

3

−3 −4 −5

(− 4, −6)

(f ) g x

1 2

f x

g 2

1 2

f 2

g 4

1 2

1 2

f 4 2

 32

x 3

1

−1

2

−3

g 1

0

(c) g f 0

g 0

−5 −6

f x 2  1

(f) g f x

g

4

sin x, g x

§S · f¨ ¸ ©2¹ g 0

x 3

4

Vertical shift 2 units upward 

(b) y

(e) f g x

f S x

(f) g f x

g sin x

61. f x

x

f

y

x 2 , g x

D g x

1 x

2

3

0

§S · sin ¨ ¸ ©2¹

1

§

2· ¸¸ 2 © ¹

S

S ¨¨

2 2

sin S x

S sin x

x

f g x f

1

sin 2S

§ § S ·· g ¨ sin ¨ ¸ ¸ © © 4 ¹¹

2

2

x  1, x t 0

1

0

§ 2· g ¨¨ ¸¸ © 2 ¹

1

2

Sx

f 2S

3

1

x2  1

x x

§ § S ·· (d) g ¨ f ¨ ¸ ¸ © © 4 ¹¹

y

15

(e) f g x

(c) g f 0

x  2

1

f 15

§ § 1 ·· (b) f ¨ g ¨ ¸ ¸ © © 2 ¹¹

−4

57. (a) y

(b) g f 1

(a) f g 2

3

−2

( − 4, − 32 )

0

60. f x

(2, 12 )

1 4

f 0

(d) f g 4

y

5

59. (a) f g 1

x x

2

x, x t 0

Domain: >0, f

4

−1

g

−2 −3

D f x

g f x

g x2

x2

x

No. Their domains are different. f D g

g

Domain: f, f

Reflection about the x-axis x 2

(c) y

D f for

x t 0.

y

4 3 2 1

x −1

1

2

3

4

5

6

−2

INSTRUCTOR USE ONLY Horizontal shift 2 units to the right

© 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE Section P.3

62. f x

f

x 2  1, g x

cos x

f g x

D g x

64.

f cos x

cos 2 x  1

g x 2  1

D f x

g

cos x 2  1

Domain: f, f

f

3 , g x x

§1· g¨ ¸ © x¹

D f x

+

x2  1 f x 2  1

2

§ 3· g¨ ¸ © x¹

+

−2

1 x 2

1  2x x

1  2 x

§ 3· ¨ ¸ 1 © x¹

65. (a)

9  x2 x2

9 1 x2

+ − − +

−1 − 1 2

+

0

+

+

x

1

2



Domain: f,  12 º¼, 0, f

3 x2  1

g f x

D f x



intervals where 1  2x and x are both positive, or both

Domain: all x z r1 Ÿ f, 1 ‰ 1, 1 ‰ 1, f

g

x 2

negative.

f g x

D g x



f

You can find the domain of g D f by determining the

No, f D g z g D f . 63. f x

D g x

29

Domain: 2, f

Domain: f, f

g

f

Functions and T Their Graphs

Domain: all x z 0 Ÿ f, 0 ‰ 0, f No, f D g z g D f .

f

f g 3

D g 3

4

(b) g f 2

g 1

(c) g f 5

g 5 , which is undefined

2

(d)

f

D g 3

f g 3

f 2

(e)

g

D f 1

g f 1

g 4

(f ) f g 1 66.

f 1

A D r t

3 2

f 4 , which is undefined

A r t

A 0.6t

S 0.6t

2

0.36S t 2

A D r t represents the area of the circle at time t. 67. F x

2x  2

Let h x

2 x, g x

x  2 and f x f g 2 x

Then, f D g D h x

x.

f 2 x  2

2 x 

2

2x  2

F x .

[Other answers possible] 68. F x

4 sin 1  x 4 x, g x

Let f x

f

sin x and h x

f g 1  x

D g D h x

1  x. Then,

f sin 1  x

4 sin 1  x

F x .

[Other answers possible] 69. f  x

 x

2

4   x 2

x 2 4  x 2

f x

Even 70. f  x

3

x

3 x

 f x

Odd 71. f  x

 x cos  x

 x cos x

 f x

Odd 72. f  x

sin 2  x

sin  x sin  x

sin x sin x

sin 2 x

Even

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE

30 Chapter P

Preparation aration for Calculus Calcu

32 , 4 is on the graph. f is odd, then 32 ,  4 is on the graph.

73. (a) If f is even, then

(b) If

74. (a) If f is even, then 4, 9 is on the graph.

(b) If f is odd, then 4,  9 is on the graph. 75. f is even because the graph is symmetric about the y-axis. g is neither even nor odd. h is odd because the graph is symmetric about the origin.

81 7 53 2 7 y 1 x  3 2 7 21 y 1 x 2 2 7 19 y x 2 2 For the line segment, you must restrict the domain. 7 19 f x x  , 3 d x d 5 2 2

78. Slope

76. (a) If f is even, then the graph is symmetric about the y-axis.

y

(5, 8)

8

y 6 6

f

4

4

2

(3, 1)

2

x x

−6 −4 −2 −2

2

4

−2

6

2

4

6

8

−2

−4

79. x  y 2

−6

y 6

f

x

y



x

f x



x, x d 0

y

(b) If f is odd, then the graph is symmetric about the origin.

0

2

y

4 3

2

2

x

−6 −4 −2 −2

2

4

6

1

−4

x

−5 −4 −3 −2 −1

1

−6 −2 −3

4  6 2  0

77. Slope

10 2

y 4

5 x  2

y 4

5 x  10

5

80. x 2  y 2

y

5 x  6

y

36

2

36  x 2

y



36  x 2 ,  6 d x d 6

y

For the line segment, you must restrict the domain. f x

5 x  6, 2 d x d 0

4 2

y x

(−2, 4)

6

−4 −2 −2

4

−4

2

4

2 x 2

−4 −6

(0, −6)

4

6

81. Answers will vary. Sample answer: Speed begins and ends at 0. The speed might be constant in the middle: y

Speed (in miles per hour) S

−6 − 4 −2

INSTRUCTOR U USE E ONLY x

Time (in hours)

© 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE Section P.3

82. Answers will vary. Sample answer: Height begins a few feet above 0, and ends at 0.

Functions and T Their Graphs

31

88. (a) For each time t, there corresponds a depth d.

(b) Domain: 0 d t d 5

y

Range: 0 d d d 30

Height

(c)

d 30 25 20 15

x

10

Distance 5

83. Answers will vary. Sample answer: In general , as the price decreases, the store will sell more. y

t 1

2

3

4

5

6

(d) d 4 | 18. At time 4 seconds, the depth is

Number of sneakers sold

approximately 18 cm. A

Average number of acres per farm

89. (a)

x

Price (in dollars)

500 400 300 200 100 t

84. Answers will vary. Sample answer: As time goes on, the value of the car will decrease

5 15 25 35 45 55

Year (5 ↔ 1955)

(b) A 20 | 384 acres farm

y

90. (a) Value

25

t

0

§ x · (b) H ¨ ¸ © 1.6 ¹

c  x2

y

85.

c  x2

y2 x2  y 2

25.

86. For the domain to be the set of all real numbers, you must require that x 2  3cx  6 z 0. So, the discriminant must be less than zero: 2

 4 6  0

  23

8 3

8 3

87. (a) T 4

(b) If H t

x  x2

If x  0, then f x

 x  x  2

If 0 d x  2, then f x If x t 2, then f x

f x

 c 

6  c 

91. f x

2 x  2.

x  x  2

x  x  2

2.

2 x  2.

So,

9c 2  24 c2 

2

§ x · § x · 0.002¨ ¸  0.005¨ ¸  0.029 © 1.6 ¹ © 1.6 ¹ 0.00078125 x 2  0.003125 x  0.029

c, a circle.

For the domain to be >5, 5@, c

3c

100

0

8

8 3 2 3

­2 x  2, x d 0 ° 0  x  2. ®2, °2 x  2, x t 2 ¯

6

16q, T 15 | 23q T t  1 , then the changes in temperature

will occur 1 hour later. (c) If H t

T t  1, then the overall temperature

INSTRUCTOR USE ONLY would be 1 degree lower.

© 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

32

NOT FOR SALE

Chapter P

92. p1 x

Preparation paration for Calculus Calc

x3  x  1 has one zero. p2 x

93. f  x

x3  x has

three zeros. Every cubic polynomial has at least one zero. Given p x Ax3  Bx 2  Cx  D, you have

a2 n 1  x

2 n 1

 "  a3  x  a1  x 3

 ª¬a2 n 1 x 2 n 1  "  a3 x3  a1xº¼  f x

p o f as x o f and p o f as x o f if Odd

A ! 0. Furthermore, p o f as x o f and p o f as x o f if A  0. Because the graph has no breaks, the graph must cross the x-axis at least one time. 94. f  x

a2 n  x

2n

 a2 n  2  x

2n  2

 "  a2  x  a0 2

a2 n x 2 n  a2 n  2 x 2 n  2  "  a2 x 2  a0 f x Even 95. Let F x

f x g x where f and g are even. Then F  x

So, F x is even. Let F x F  x

f  x g  x

f  x g  x

f x g x

F x .

f x g x where f and g are odd. Then

ª ¬ f x ºª ¼¬ g x º¼

f x g x

F x .

So, F x is even. 96. Let F x F  x

f x g x where f is even and g is odd. Then f  x g  x

f x ª ¬ g x º¼

 f x g x

 F x .

So, F x is odd. x 24  2 x

97. (a) V

2

Domain: 0  x  12 1100

(b)

−1

12 −100

Maximum volume occurs at x (c)

4. So, the dimensions of the box would be 4 u 16 u 16 cm.

x

length and width

volume

1

24  2 1

1¬ª24  2 1 º¼

2

24  2 2

2 ª¬24  2 2 º¼

3

24  2 3

3¬ª24  2 3 º¼

4

24  2 4

4 ª¬24  2 4 º¼

5

24  2 5

5¬ª24  2 5 º¼

2

6

24  2 6

6 ª¬24  2 6 º¼

2

2 2

2

2

484 800 972 1024 980 864

The dimensions of the box that yield a maximum volume appear to be 4 u 16 u 16 cm.

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE Section P.4

y 2 03

98. By equating slopes,

02 x 3 6 x 3 6  2 x 3

y 2 y

y

2

2x , x 3

2

99. False. If f x

x 2 , then f 3

f 3

33

103. First consider the portion of R in the first quadrant: x t 0, 0 d y d 1 and x  y d 1; shown below.

§ 2x · x2  ¨ ¸ . © x  3¹

x2  y2

L

Fitting Mod Models Mo to Data

1

−1

(0, 1)

(2, 1)

x

(0, 0)

(1, 0) 2

−1

9, but

3 z 3.

The area of this region is 1 

1 2

3. 2

By symmetry, you obtain the entire region R: y

100. True 2

101. True. The function is even. 102. False. If f x

(−2, 1)

x 2 then, f 3x

3 x 2

9 x 2 and

3x 2 . So, 3 f x z f 3x .

3 f x

(2, 1) x

−2

1

2

(2, −1)

(−2, − 1) −2

32

The area of R is 4 104. Let g x

c be constant polynomial.

Then f g x So, f c

6.

f c and g f x

c.

c. Because this is true for all real numbers c,

f is the identity function: f x

x.

Section P.4 Fitting Models to Data 1. Trigonometric function

6. (a)

20

2. Quadratic function 3. No relationship 0

20 0

4. Linear function

No, the relationship does not appear to be linear. y

5. (a), (b)

(b) Quiz scores are dependent on several variables such as study time, class attendance, etc. These variables may change from one quiz to the next.

250 200 150

7. (a) d

100

x 3

6

9

12

d = 0.066F

15

Yes. The cancer mortality increases linearly with increased exposure to the carcinogenic substance. (c) If x

3, then y | 136.

0.066 F

10

(b)

50

0

110 0

The model fits the data well. (c) If F

55, then d | 0.066 55

3.63 cm.

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

34

Chapter P

NOT FOR SALE

Preparation paration for Calculus Calc

9.7t  0.4

8. (a) s (b)

(b)

−1

0

100 0

The model fits the data well. 24.65 meters second. (c) If t 2.5, s 9. (a) Using a graphing utility, y 0.151x  0.10

(c) According to the model, the times required to attain speeds of less than 20 miles per hour are all about the same. (d) Adding (0, 0) to the data produces 0.002 s 2  0.02 s  0.1

t

The correlation coefficient is r | 0.880.

(e) No. From the graph in part (b), you can see that the model from part (a) follows the data more closely than the model from part (d).

35

y = 0.151x + 0.10

0

14. (a) N1

200 0

(c) Greater per capita energy consumption by a country tends to correspond to greater per capita gross national product. The four countries that differ most from the linear model are Venezuela, South Korea, Hong Kong and United Kingdom. (d) Using a graphing utility, y 0.155 x  0.22 and r | 0.984. 0.3323t  612.9333

10. (a) Linear model: H

(b)

20

5 −5

(b)

0.002s 2  0.04 s  1.9

13. (a) t

45

N3

3.72t  31.6 0.0932t 3  1.735t 2  3.77t  35.1

90

(b)

N1

N3 0

16 30

(c) The cubic model is better. (d) N 2

0.221t 2  6.81t  24.9

90

600

N1 N2

0

0

1300

16 30

0

The model fits the data well. (c) When t 500, H 11. (a) y1

0.3323 500  612.9333 | 446.78. 0.04040t 3  0.3695t 2  1.123t  5.88

y2

0.264t  3.35

y3

0.01439t 3  0.1886t 2  0.476t  1.59

The model does not fit the data well. (e) For 2007, t 17, and N1 | 94.8 million and N 3 | 14.5 million. Neither seem accurate. The linear model’s estimate is too high and the cubic model’s estimate is too low. (f ) Answers will vary 15. (a) y

18

(b)

y1 + y2 + y3

(b)

y1

1.806 x3  14.58 x 2  16.4 x  10

300

y2 y3

0

8

0

0

For year 12, y1  y2  y3 | 47.5 cents mile.

7 0

(c) If x

4.5, y | 214 horsepower.

12. (a) S 180.89 x 2  205.79 x  272 25000 (b)

14

0 0

INSTRUCTOR USE ONLY (c) When x

ounds. 2, S | 583.98 pounds.

© 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE

Review Exercises for fo f Chapter P

2.9856 u 104 p 3  0.0641 p 2  5.282 p  143.1

16. (a) T 350

(b)

18. (a) S t

(b)

35

56.37  25.47 sin 0.5080t  2.07

100

M(t)

110

0 150

0

300q F , p | 68.29 lb in.2 .

(c) For T

The model is a good fit.

(d) The model is based on data up to 100 pounds per square inch.

(c)

17. (a) Yes, y is a function of t. At each time t, there is one and only one displacement y.

2.35  1.65

2

S(t)

The model is a good fit. (d) The average is the constant term in each model. 83.70qF for Miami and 56.37qF for Syracuse.

The period is approximately 0.5.

(e) The period for Miami is 2S 0.4912 | 12.8. The

0.35 sin 4S t  2.

(c) One model is y

13 0

0.35.

2 0.375  0.125

100

0

(b) The amplitude is approximately

(d)

13 0

period for Syracuse is 2S 0.5080 | 12.4. In both

4

cases the period is approximately 12, or one year. (f ) Syracuse has greater variability because 25.47 ! 7.46.

(0.125, 2.35) (0.375, 1.65) 0

19. Answers will vary.

0.9 0

The model appears to fit the data.

20. Answers will vary.

21. Yes, A1 d A2 . To see this, consider the two triangles of areas A1 and A2 : T2 T1 a1

γ1

b1

β1

α1

γ2

a2

b2

β2

c1

α2 c2

1, 2, the angles satisfy D i  E i  J i

For i

S . At least one of D1 d D 2 , E1 d E 2 , J 1 d J 2 must hold.

Assume D1 d D 2 . Because D 2 d S 2 (acute triangle), and the sine function increases on >0, S 2@, you have A1

1b c 2 1 1

sin D1 d d

1 2

b2c2 sin D1

1b c 2 2 2

sin D 2

A2

Review Exercises for Chapter P 1. y

5x  8

x

0: y

5 0  8

y

0: 0

5x  8 Ÿ x

2. y

x

8 Ÿ 0,  8 y-intercept 8 5

Ÿ

85 , 0 x-intercept

 2 x  6

x

0: y

0  2 0  6

y

0: 0

x  2 x

12 Ÿ 0, 12 y-intercept

 6 Ÿ x

2, 6 Ÿ 2, 0 , 6, 0 x-intercepts

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

36

NOT FOR SALE

Chapter P

Preparation paration for Calculus Calc

x 3 x4

3. y

9.  13 x 

x

0: y

03 04

y

0: 0

x 3 Ÿ x x4

4. xy

 52 x

3 § · Ÿ ¨ 0, ¸ y-intercept 4 © 4¹ 3 Ÿ 3, 0 x-intercept.

5y 6

1

 y

6 5

Slope:

6 5

2 5

y-intercept:

6 5 y

4

x



2x 5

y

0 and y

0 are both impossible. No intercepts.

3 2

5. Symmetric with respect to y-axis because

 x 2 y

  x  4 y

0

x y  x  4y

0.

2

2

−3

2

 x 4

  x  3

y

x  x  3.

0.25

2 x  15 y

2

 12 x 

7. y

1

10. 0.02 x  0.15 y

2

4

x

−1 −1

6. Symmetric with respect to y-axis because

y

−2

25 2x   15

y

5 3

2 Slope:  15

3 2

53

y-intercept: 0,

Slope:  12

y

3 2

y-intercept:

3

y 3

1

2

x

−4

1

4

8

12

−1

x

−1

1

2

−2

3

−1 −2

8. 6 x  3 y

3 y

12

y-intercept: 0, 9

6 x  12

x-intercepts: 1, 0 , 9, 0

2x  4

y

 x  1 x  9

9  8x  x2

11. y

y

Slope: 2

28 24

y-intercept: 0,  4

12

y

8

4

4 x

2

− 12

−6 −4 − 2

2

4

x −6 −4 −2

−2 −4

−8

2

4

6

x 6  x

12. y

y-intercept: (0, 0) x-intercepts: (0, 0), (6, 0) y 10 8 6 4

INSTRUCTOR USE USE ONLY 2

−2

x

2

4

8

© 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE

Review Exercises for fo f Chapter P

18. x  y  1

2 4 x

13. y

Domain: f, 4@

y  x

y

2

0 Ÿ y

x 1

7 Ÿ y

x2  7

37

14

5

3 − 12

2

12 −2

1 −1

x 1

−1

2

3

4

x 1

y

5

x  1  x 2 x4 4

14. y

7 x2  x  6

0

y

No real solution.

6

No points of intersection.

4

x −2 −2

2

4

6

8

10

You need factors x  4 and x  4 .

−6

Multiply by x to obtain origin symmetry.

4 x 2  25

x x  4 x  4

y

Xmin 5 Xmax 5 Xscl 1 Ymin 30 Ymax 10 Yscl 5 16. y

x 2  7 do not

19. Answers will vary. Sample answer:

−4

15. y

x  1 and y

The graphs of y intersect.

2

kx3

20. y

83 x  6

(a) 4

k 1 Ÿ k

(b) 1

k 2 Ÿ k

(c) 0

k 0 Ÿ and k will do!

3

21.

4 and y

3

4 x3

 18 and y

 18 x 3

3

k 1 Ÿ k 3

(d) 1

Xmin 40 Xmax 40 Xscl 10 Ymin 40 Ymax 40 Yscl 10

x3  16 x

1Ÿ y

x3

y 5 4

( 5, 52 )

3 2

17. 5 x  3 y

1 Ÿ y

x y

1 3

5 Ÿ y

5 x

1

 1

( 32 , 1 ) 1

x5

2

Slope 3 −1

Using a graphing utility, the lines intersect at 2, 3 . Analytically, 1 3

5 x

 1

5 x  1 16

3 2 7 2

3 7

y

(−1, 8) 6

3 x  15

4 2

8x

x. 2 2, y x5

5

22. The line is horizontal and has slope 0.

(−7, 8)

x5

4

§ 5· ¨ ¸ 1 © 2¹ § 3· 5¨ ¸ © 2¹

6

−5

x

3

−8

−6

−4

x

−2

2

INSTRUCTOR USE S ONLY For x

2  5

3.

−22

© 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

38

23.

NOT FOR SALE

Chapter P

Preparation paration for Calculus Calc

t 5 0  8

1  5 2  8

t 5 8 t 5 8 5t  25

28. Because m

5t

0 x  5

y 4

6 10 3  5 24

0, the line is horizontal.

4 or y  4

y

0

y 8 6

(5, 4)

1 2

1 5

t

24.

3  1 3  t 4 3  t 44

x −4

2

7 4

y 5



2 4

6



 53 x  3 5 x  15

5x  3 y

0 3

x x 3

−6 −8

(0, − 414)

0

 23 x  2

y 4

30. (a)

3 y  12 26. Because m is undefined the line is vertical.

8 or x  8

x

0

y 4

6 4 2

(−8, 1) x −4

−2

2 −2

(c) m

−4

 23 x  2

y 2x  3y  6

0

1 x  2 x  2

0

x  y  2

4 1 26 y 4

4 y  16 3x  4 y  22



3 4 3 x  2 4 3 x  6 

0

(d) Because the line is horizontal the slope is 0.

y 3 2 1

(−3, 0)

0

y

 23 x  3

y 0

27.

2 x  4

2 x  3 y  16

(b) x  y 0 has slope 1. Slope of the perpendicular line is 1.

y

−6

5 3

3 y  15

8

−4

−10

5 x  3 y  30

(d) Slope is undefined so the line is vertical.

x 2

 3

5 x  15

y 5

7 x  4 y  41

x

50 3  0

(c) m

y

−8 −6 −4 −2

5 3

0

7 x  21

0

3 has slope 53 .

3 y  15

21 4

 3

7 x  16 y  101

(b) 5 x  3 y

x  3

x

7 x  21

0

y 5

7x 4

4 y  20

7 16

16 y  80

53  3

25. y  5

6

y 5

29. (a)

3t

t

4

−2

36 3  8 3 11 9  3t

53

−2

y

4

y 4

0

x

INSTRUCTOR ST USE ONLY −44 − 3

−1 1

1

2

3

−3 −4

© 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE

Review Exercises for fo f Chapter P

31. The slope is 850. V 850t  12,500.

V 3

9  y2

36. x

850 3  12,500

39

Not a function of x since there are two values of y for some x.

$9950

y

9.25t  13.50t  36,500

32. (a) C

(b) R

22.75t  36,500

4

30t

2

22.75t  36,500

30t

(c)

7.25t

1

x − 12 − 9 − 6 − 3 −1

36,500

3

6

12

−2

t | 5034.48 hours to break even

−4

33. x  y

2

6

y

r

1 x

37. f x

x6

Not a function because there are two values of y for some x.

(a) f 0 does not exist.

y 4 3

1 1  1  'x 1 'x

f 1  'x  f 1 'x

(b)

2

1 , 'x z 1, 0 1  'x

1 x 2

−1

4

1  1  'x 'x 'x

1 

8 10 12 14

−2 −3

34. x 2  y

0

Function of x because there is one value for y for each x. y 6 5 4

(a) f 4

4 2

 2

(b) f 0

02

2

(c) f 1

12

1

(b) Domain: all x z 5 or f, 5 ‰ 5, f

x −1

1

2

3

Range: all y z 0 or f, 0 ‰ 0, f

x 2 x 2

35. y

(c) Domain: all x or f, f

y is a function of x because there is one value of y for each x. y

Range: all y or f, f 40. f x

4 3 1 x 1

3

4

5

6

(b)

−2 −3 −4

1  x 2 and g x

2x  1

1  x 2  2 x  1  x 2  2 x f x g x 1  x 2 2 x  1 2 x3  x 2  2 x  1 g f x g 1  x 2 2 1  x 2  1 3  2 x 2

(a) f x  g x

2

−2 −1

1

Range: >0, 6@

2

−2

18 because  4  0

39. (a) Domain: 36  x 2 t 0 Ÿ 6 d x d 6 or >6, 6@

3

−3

2 °­x  2, x  0 ® °¯ x  2 , x t 0

38. f x

−4

(c)

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

40

NOT FOR SALE

Chapter P

41. (a) f x

Preparation paration for Calculus Calc x 3  c, c y

43. (a) Odd powers: f x

2, 0, 2

x 3 , h x

x5

g

2

c=0

x, g x

h 3 −3

c = −2

1

f

x −3 −2

2

3

−2

The graphs of f, g, and h all rise to the right and fall to the left. As the degree increases, the graph rises and falls more steeply. All three graphs pass through the points (0, 0), (1, 1), and 1, 1 and are

c=2

(b) f x

x

 c , c 3

y

3

2, 0, 2

c=0

symmetric with respect to the origin.

c = −2

Even powers: f x 1

x 2 , g x

x 4 , h x

x6

g

4

x

−2

2 −2

h

3

f

c=2

−3

(c) f x

x

−3

 2  c, c 3

The graphs of f, g, and h all rise to the left and to the right. As the degree increases, the graph rises more steeply. All three graphs pass through the points 0, 0 , 1, 1 , and 1, 1 and are symmetric with

y

c=2

2

c=0

1

respect to the y-axis.

x 2

4

All of the graphs, even and odd, pass through the origin. As the powers increase, the graphs become flatter in the interval 1  x  1.

−1 −2

c = −2

(d) f x

(b) y

2, 0, 2

cx 3 , c

3 0

2, 0, 2

x 7 will look like h x

x8 will look like

even more steeply. y

y

h x

c=2

3

x5 , but rise and fall

6

x , but rise even more steeply.

2

44. (a) f x

1

c=0 −3 −2 −1

1

x

2

3

2

The leading coefficient is positive and the degree is even so the graph will rise to the left and to the right.

c = −2

42. f x

x 2 x  6

100

x3  3x 2 −4

6

10

− 25

−6

(0, 0)

(b) g x

6

(a) The graph of g is obtained from f by a vertical shift down 1 unit, followed by a reflection in the x-axis: ª¬ f x  1º¼

f x  2  1

300

 x3  3x 2  1

(b) The graph of g is obtained from f by a vertical shift upwards of 1 and a horizontal shift of 2 to the right. g x

2

The leading coefficient is positive and the degree is odd so the graph will rise to the right and fall to the left.

(2, − 4) 6

g x

x3 x  6

x  2

3

−2

10

− 100

 3 x  2  1 2

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE

Problem Solving ffo for Chapter P

(c) h x

x3 x  6

3

The leading coefficient is positive and the degree is even so the graph will rise to the left and to the right. 200

−4

10

46. For company (a) the profit rose rapidly for the first year, and then leveled off. For the second company (b), the profit dropped, and then rose again later. 47. (a) (b) (c) (d)

3 (cubic), negative leading coefficient 4 (quartic), positive leading coefficient 2 (quadratic), negative leading coefficient 5, positive leading coefficient 1.204 x  64.2667

48. (a) y

− 800

41

(b)

70

y

45. (a) x

x 0

33 0

y

2x  2 y

(c) The data point (27, 44) is probably an error. Without this point, the new model is 1.4344 x  66.4387. y

24

y

12  x

A

xy

x 12  x

49. (a) Yes, y is a function of t. At each time t, there is one and only one displacement y. (b) The amplitude is approximately 0.25  0.25 2 0.25. The period is

(b) Domain: 0  x  12 or (0, 12) 40

approximately 1.1. 0

(c) One model is y

12 0

36 in.2 . In general, the

(c) Maximum area is A

maximum area is attained when the rectangle is a square. In this case, x 6.

(d)

1 1 § 2S · cos¨ t ¸ | cos 5.7t 4 1.1 4 © ¹

0.5

(1.1, 0.25) 0

2.2

(0.5, −0.25) −0.5

The model appears to fit the data.

Problem Solving for Chapter P 1. (a)

x2  6 x  y 2  8 y

x2  6 x  9  y 2  8 y  16 x

 3  y  4 2

2

0 9  16 25

Center: (3, 4); Radius: 5 4 3 3 . Slope of tangent line is  . So, y  0  x  0 Ÿ y 3 4 4 40 4 (c) Slope of line from (6, 0) to (3, 4) is  . 36 3 3 3 3 9 Slope of tangent line is . So, y  0 x  Tangent line x  6 Ÿ y 4 4 4 2 3 3 9 x  (d)  x 4 4 2 3 9 x 2 2 3 x (b) Slope of line from (0, 0) to (3, 4) is

3  x Tangent line 4

9· § Intersection: ¨ 3,  ¸ 4¹ ©

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

42

NOT FOR SALE

Chapter P 2. Let y

Preparation paration for Calculus Calc

mx  1 be a tangent line to the circle from the point (0, 1). Because the

center of the circle is at 0, 1 and the radius is 1 you have the following.

m

2

x 2  y  1

2

x 2  mx  1  1

2

1 1

 1 x  4mx  3 2

0

Setting the discriminant b 2  4ac equal to zero, 16m 2  4 m 2  1 3

0

16m 2  12m 2

12

2

12

m

r

4m

3x  1 and y

Tangent lines: y 3. H x

3

 3 x  1.

y

­1, x t 0 ® ¯0, x  0

­1, x d 0 ® ¯0, x ! 0

(d) H  x

4 3 2

y

1 x −4 −3 −2 −1 −1

1

2

3

4

4

3

−2

2

−3 −4

x −4 −3 −2 −1 −1

(e)

3 2

­1 ° , x t 0 ®2 ° ¯0, x  0

1 H x 2

1

y

x 2

3

4

−4

y

1

3

−3

4

−4 −3 −2 −1 −1

2

−2

­1, x t 0 ® ¯2, x  0

(a) H x  2

1

4 4 3

−3

2

−4

1 x −4 −3 −2 −1 −1

­1, x t 2 ® ¯0, x  2

(b) H x  2 y

1

2

3

4

−2 −3 −4

4 3

­1, x t 2 ® ¯2, x  2

(f )  H x  2  2

2 1 x −4 −3 −2 −1 −1

1

2

3

4 y

−2

(c)  H x

−3

4

−4

3

­1, x t 0 ® ¯0, x  0

1 y

x

4

−4 −3 −2 −1 −1

3

−2

2

−3

1

2

3

4

−4

1 x −4 −3 −2 −1 −1

1

2

3

4

−2 −3 −4

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE

Problem Solving ffo for Chapter P

(g) f x

4. (a) f x  1

43



y

y 4

4

2

−3

x

−1

1

−4

3

x

−2

2

−2

−2

−4

−4

(b) f x  1

5. (a) x  2 y

A x

100  x 2

100 Ÿ y

y 4

4

§ 100  x · x¨ ¸ 2 ¹ ©

xy



x2  50 x 2

Domain: 0  x  100 or 0, 100 x

−4

(b)

4

1600

−2 −4

(c) 2 f x

0

110 0

y

Maximum of 1250 m 2 at x

4

 12 x 2  100 x  2500  1250

x

−2

2

25 m.

 12 x 2  100 x

(c) A x −4

50 m, y

4

 12 x  50  1250

−2

2

−4

A 50

(d) f  x

x

1250 m 2 is the maximum.

50 m, y

25 m

y 4

6. (a) 4 y  3 x

300  3 x 4

300 Ÿ y

2

−4

A x

x

−2

2

4

−2

§ 300  3 x · x¨ ¸ 2 © ¹

x 2 y

3 x 2  300 x 2

Domain: 0  x  100

−4

y

(b) 4000

(e)  f x

3500 3000

y

2500 2000

4

1500 1000

2

500

−4

−2

2

25

4

−2

(c) A x

f x y

100

50 ft, y

37.5 ft.

x  100 x  32 x 2  100 x  2500  3750  32

2

2

A 50

2 x

−2

75

 32 x  50  3750

4

−4

50

Maximum of 3750 ft 2 at x

−4

(f )

x

x

2

where x

3750 square feet is the maximum area, 50 ft and y

37.5 ft.

4

−2

INSTRUCTOR T USE ONLY −4

© 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

44

NOT FOR SALE

Chapter P

Preparation paration for Calculus Calc

7. The length of the trip in the water is

length of the trip over land is 4  x2  2

total time is T

22  x 2 , and the

1  3  x . So, the

y

10. 4

2

1  3  x 4

3 2

2

hours.

(4, 2)

1 x 1

8. Let d be the distance from the starting point to the beach.

Average speed

9. (a) Slope

distance time 2d d d  120 60 2 1 1  120 60 80 km h

3

(a) Slope

4

32 94

1 . Slope of tangent line is greater 5

2 1 4 1

1 . Slope of tangent line is less 3

(b) Slope than

1 . 3

2.1  2 4.41  4 10 greater than . 41

10 . Slope of tangent line is 41

(c) Slope

94 32

5. Slope of tangent line is less

4 1 2 1

3. Slope of tangent line is greater

f 4  h  f 4 4  h  4

(d) Slope

than 3. 4.41  4 2.1  2 less than 4.1.

(c) Slope

(d) Slope

5

1 . 5

than

than 5. (b) Slope

2

−1

4.1. Slope of tangent line is

4 h 2 h

(e)

2  h

4 h 2 ˜ h

4  h  4

f 2  h  f 2 2  h  2 2

4 h 2 h

h



4 h  2 4 h  2



4 h  2

1 ,h z 0 4 h  2

4

h

As h gets closer to 0, the slope gets closer to

4h  h 2 h 4  h, h z 0

slope is

(e) Letting h get closer and closer to 0, the slope approaches 4. So, the slope at (2, 4) is 4.

1 . The 4

1 at the point (4, 2). 4

11. Using the definition of absolute value, you can rewrite the equation.

y  y ­2 y, ® ¯0,

x x

y ! 0 y d 0

­2 x, x ! 0 . ® x d 0 ¯0,

For x ! 0 and y ! 0, you have 2 y

2x Ÿ y

x.

For any x d 0, y is any y d 0. So, the graph of y  y

x  x is as follows.

y

(−1, 1)

5 4 3 2

(0, 12 ) (2, 14 ) x

(− 6, − 14 ) (− 4, − 12 )

(− 3, − 1)

−1

1 2 3

−2 −3 −4 −5

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE

Problem Solving ffo for Chapter P

I x2

12. (a)

2I

x

 3

x2  6x  9

2x2

x2  6x  9

0

2

x 0

6 r

x

I x2  y 2

(b)

36  36 2

2

3

2I

x  3  y 2 2

2 x 2  y 2

x2  6x  9  y 2

2x2  2 y 2

x2  y2  6x  9

0

x

1

3 r 18 | 1.2426,  7.2426

 3  y 2

x

45

2

 3  y 2 2

18

18 and center 3, 0 .

Circle of radius y 8 6

2 −8

x

− 4 −2 −2

2

4

−6

13. (a)

I x2  y2

kI

x

 4  y 2 2

k x2  y 2

x

 4  y 2

k

 1 x 2  8 x  k  1 y 2

2

2 is a vertical line. Assume k z 1.

1, then x

If k

16

8x  y2 k 1 8x 16   y2 x2  k  1 k  1 2

16 k 1 16 16  k  1 k  1 2

x2 

2

4 · § 2 ¨x  ¸  y k  1¹ ©

3, x  2  y 2 2

(b) If k

16k

k

 1

2

, Circle

12

y 6 4 2 −6

−4

x

−2

2

4

−2 −4

(c) As k becomes very large,

16k 4 o 0. o 0 and 2 k 1 k  1

The center of the circle gets closer to (0, 0), and its radius approaches 0.

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

46

NOT FOR SALE

Chapter P

Preparation paration for Calculus Calc

d1d 2

1

ª x  1  y 2 ºª x  1  y 2 º ¬ ¼¬ ¼

1

2 2 2 2  1 x  1  y 2 ª x  1  x  1 º  y 4 ¬ ¼

1

14. 2

x

x 2  1

2

2

 y 2 ª¬2 x 2  2º¼  y 4

x  2x  1  2x y  2 y  y 4

2

x

4

2 2

 2x y  y 2 2

4

2

1

4

1

 2x  2 y 2 x2  y 2 2

2

0 2 x 2  y 2

y 2 1

(− 2 , 0)

( 2 , 0) x

−2

2

(0, 0)

−1 −2

2x2 Ÿ x

0. Then x 4

Let y

So, 0, 0 , 15. f x







0 or x 2

2.



2, 0 and 

2, 0 are on the curve.

1 1 x

y

(a) Domain: all x z 1 or f, 1 ‰ 1, f Range: all y z 0 or f, 0 ‰ 0, f § 1 · f¨ ¸ ©1  x ¹

(b) f f x

1 § 1 · 1¨ ¸ ©1  x ¹

1 1 x 1 1 x

1 x x

x 1 x

Domain: all x z 0, 1 or f, 0 ‰ 0, 1 ‰ 1, f



§ x  1· f¨ ¸ © x ¹



(c) f f f x

1 § x  1· 1¨ ¸ © x ¹

1 1 x

x

Domain: all x z 0, 1 or f, 0 ‰ 0, 1 ‰ 1, f (d) The graph is not a line. it has holes at (0, 0) and (1, 1). y 2 1 x −2

1

2

−2

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE C H A P T E R 1 Limits and Their Properties Section 1.1

A Preview of Calculus..........................................................................48

Section 1.2

Finding Limits Graphically and Numerically .....................................49

Section 1.3

Evaluating Limits Analytically ............................................................61

Section 1.4

Continuity and One-Sided Limits........................................................73

Section 1.5

Infinite Limits .......................................................................................84

Review Exercises ..........................................................................................................92 Problem Solving ...........................................................................................................99

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE C H A P T E R 1 Limits and Their Properties Section 1.1 A Preview of Calculus 1. Precalculus: 20 ft/sec 15 sec

300 ft

y

(a)

2. Calculus required: Velocity is not constant.

Distance | 20 ft/sec 15 sec

6x  x2

7. f ( x)

10

300 ft

8

P

6

3. Calculus required: Slope of the tangent line at x the rate of change, and equals about 0.16.

2 is x

4. Precalculus: rate of change

slope

1 bh 2

5. (a) Precalculus: Area

(b) Calculus required: Area

1 2

−2

0.08

5 4

10 sq. units

(b) slope

2

4

m

8

6 x  x 2  8

bh | 2 2.5

x2  4 x , x z 2

3, m

For x

2.5, m

4  2.5

1.5

3 2

(a)

For x

1.5, m

4  1.5

2.5

5 2

1

x y

P(4, 2) 2

 2 4  x x2

For x

5 sq. units

6. f ( x)

4 3

x

(c) At P 2, 8 , the slope is 2. You can improve your approximation by considering values of x close to 2. x 1

(b) slope

2

3

4

5

x 2 x 4

m



x 2 x  2



x 2



1 ,x z 4 x  2

x

1: m

x

3: m

x

5: m

1 1 3 1  2 1 | 0.2679 3  2 1 | 0.2361 5  2

(c) At P 4, 2 the slope is

1 4  2

1 4

0.25.

You can improve your approximation of the slope at x 4 by considering x-values very close to 4. 8. (a) For the figure on the left, each rectangle has width

S 4

.

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

48

© Cengage Learning. All Rights Reserved.

NOT FOR SALE Section 1.2

Area |

Finding Limits Graphically and Numerically

49



S S 3S º  sin  sin  sin S » sin « 4¬ 4 2 4 ¼

Sª 2

2º » 2 »¼

1 « 4 «¬ 2

2 1 S | 1.8961 4 For the figure on the right, each rectangle has width

Area |

S 6

.



S S S 2S 5S º sin  sin  sin  sin   sin S » « 6¬ 6 3 2 3 6 ¼

S ª1

3 3 1º 1  » «  6 «¬ 2 2 2 2 »¼ 3  2 S | 1.9541 6

(b) You could obtain a more accurate approximation by using more rectangles. You will learn later that the exact area is 2. 9. (a) Area | 5 

Area |

1 2

5 2



5 3



5 4

| 10.417

5  1.55  52  2.55  53  3.55  54  4.55 | 9.145

(b) You could improve the approximation by using more rectangles. 10. Answers will vary. Sample answer:

The instantaneous rate of change of an automobile’s position is the velocity of the automobile, and can be determined by the speedometer.

5  1 2

11. (a) D1

1

(b) D2

52

2

 1  5



1

2

16  16 | 5.66

52  53

2



53  54

1

2



1

54  1

2

| 2.693  1.302  1.083  1.031 | 6.11 (c) Increase the number of line segments.

Section 1.2 Finding Limits Graphically and Numerically 1.

x

3.9

3.99

3.999

4.001

4.01

4.1

f (x)

0.2041

0.2004

0.2000

0.2000

0.1996

0.1961

lim

x o 4 x2

2.

x  4 | 0.2000  3x  4

1· § ¨ Actual limit is .¸ 5¹ ©

x

1.9

1.99

1.999

2.001

2.01

2.1

f (x)

0.2564

0.2506

0.2501

0.2499

0.2494

0.2439

lim

xo2

x  2 | 0.25 x2  4

1· § ¨ Actual limit is .¸ 4¹ ©

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

Chapter 1

50 3.

x

–0.1

–0.01

–0.001

0.001

0.01

0.1

f (x)

0.2050

0.2042

0.2041

0.2041

0.2040

0.2033

lim

x  6  x

x

–5.1

5.01

5.001

4.999

4.99

4.9

f (x)

–0.1662

–0.1666

–0.1667

–0.1667

–0.1667

–0.1671

xo0

4.

6

1 · § .¸ ¨ Actual limit is 2 6¹ ©

| 0.2041

4 x 3 | 0.1667 x 5

lim

x o 5

5.

NOT FOR SALE

Limits its and Their Properties

1· § ¨ Actual limit is  .¸ 6¹ ©

x

2.9

2.99

2.999

3.001

3.01

3.1

f (x)

–0.0641

–0.0627

–0.0625

–0.0625

–0.0623

–0.0610

ª1 x  1 º¼  1 4 lim ¬ | –0.0625 x o3 x 3

6.

x

3.9

3.99

3.999

4.001

4.01

4.1

f (x)

0.0408

0.0401

0.0400

0.0400

0.0399

0.0392

ª x x  1 º¼  4 5 lim ¬ | 0.04 x  4

1 · § ¨ Actual limit is .¸ 25 ¹ ©

xo4

7.

x

–0.1

–0.01

–0.001

0.001

0.01

0.1

f (x)

0.9983

0.99998

1.0000

1.0000

0.99998

0.9983

lim

xo0

8.

Actual limit is 1. Make sure you use radian mode.

–0.1

–0.01

–0.001

0.001

0.01

0.1

f (x)

0.0500

0.0050

0.0005

–0.0005

–0.0050

–0.0500

lim

cos x  1 | 0.0000 x

Actual limit is 0. Make sure you use radian mode.

x

0.9

0.99

0.999

1.001

1.01

1.1

f (x)

0.2564

0.2506

0.2501

0.2499

0.2494

0.2439

lim

x o1

10.

sin x | 1.0000 x

x

xo0

9.

1 · § ¨ Actual limit is  .¸ 16 ¹ ©

x  2 | 0.2500 x2  x  6

1· § ¨ Actual limit is .¸ 4¹ ©

x

–3.1

–3.01

–3.001

–2.999

–2.99

–2.9

f (x)

1.1111

1.0101

1.0010

0.9990

0.9901

0.9091

lim

x o 3

x 3 | 1.0000 x 2  7 x  12

Actual limit is 1.

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE Section 1.2

11.

x f (x)

0.9

0.99

0.999

1.001

1.01

1.1

0.7340

0.6733

0.6673

0.6660

0.6600

0.6015

x 1 | 0.6666 x6  1

x o1

12.

x

–2.1

–2.01

–2.001

–1.999

–1.99

–1.9

f (x)

12.6100

12.0601

12.0060

11.9940

11.9401

11.4100

lim

x o –2

13.

Actual limit is 12.

–0.1

–0.01

–0.001

0.001

0.01

0.1

f (x)

1.9867

1.9999

2.0000

2.0000

1.9999

1.9867

lim

14.

x3  8 | 12.0000 x  2

x

xo0

sin 2 x | 2.0000 x

Actual limit is 2. Make sure you use radian mode.

x

–0.1

–0.01

–0.001

0.001

0.01

0.1

f (x)

0.4950

0.5000

0.5000

0.5000

0.5000

0.4950

lim

xo0

tan x | 0.5000 tan 2 x

15. lim 4  x 16. lim x 2  3 xo2

18. lim f x x o1

19. lim

xo2

24. lim tan x does not exist because the function increases x oS 2

without bound as x approaches

4

x o1

17. lim f x

1· § ¨ Actual limit is .¸ 2¹ ©

1

x o3

lim 4  x

xo2

lim x  3 x o1

4

from the left and

S 2

from

25. (a) f 1 exists. The black dot at (1, 2) indicates that

f 1

for values of x to the right of 2,

2.

(b) lim f x does not exist. As x approaches 1 from the x o1

x  2 For values of x to the left of 2, x  2 x  2 x  2

1, whereas 1.

2 20. lim does not exist because the function increases x o5 x  5 and decreases without bound as x approaches 5.

left, f (x) approaches 3.5, whereas as x approaches 1 from the right, f (x) approaches 1. (c) f 4 does not exist. The hollow circle at

4, 2 indicates that f is not defined at 4. (d) lim f x exists. As x approaches 4, f x approaches xo4

2: lim f x xo4

2.

0

x o1

xo0

2

decreases without bound as x approaches

2

x  2 does not exist. x  2

22. lim sec x

S

the right. 2

21. lim sin S x

51

2· § ¨ Actual limit is .¸ 3¹ ©

4

lim

Finding Limits Graphically and Numerically

1

23. lim cos 1 x does not exist because the function xo0

oscillates between –1 and 1 as x approaches 0.

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

52

NOT FOR SALE

Chapter 1

Limits its and Their Properties

26. (a) f 2 does not exist. The vertical dotted line

y

30.

indicates that f is not defined at –2.

2

(b) lim f x does not exist. As x approaches –2, the

1

x o 2

values of f x do not approach a specific number. (c) f 0 exists. The black dot at 0, 4 indicates that

f 0

lim f x exists for all values of c z S .

xoc

(d) lim f x does not exist. As x approaches 0 from the xo0

31. One possible answer is y

from the right, f x approaches 4.

6 5

(e) f 2 does not exist. The hollow circle at

2,

1 2

4

indicates that f 2 is not defined.

1 x −2 − 1 −1

xo2

x

1

2

3

4

5

1 . 2

(g) f 4 exists. The black dot at 4, 2 indicates that

f 4

f

2

(f ) lim f x exists. As x approaches 2, f x approaches 1 : lim f 2 xo2

x

π

−1

4.

left, f x approaches 12 , whereas as x approaches 0

π 2

−π 2

32. One possible answer is y

2.

4

(h) lim f x does not exist. As x approaches 4, the

3

xo4

2

values of f x do not approach a specific number.

1 x

27. lim f x exists for all c z 3.

−3

−2

−1

1

2

−1

xoc

28. lim f x exists for all c z 2, 0. xoc

29.

y 6 5 4 3

f

2 1 x − 2 −1 −1

1

2

3

4

5

−2

lim f x exists for all values of c z 4.

xoc

33. C t

(a)

9.99  0.79 ª¬ª ¬ t  1 º¼º¼ 16

0

6 8

(b)

t

3

3.3

3.4

3.5

3.6

3.7

4

C

11.57

12.36

12.36

12.36

12.36

12.36

12.36

lim C t

t o 3.5

12.36

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE Section 1.2

(c)

Finding Limits Graphically and Numerically

t

2

2.5

2.9

3

3.1

3.5

4

C

10.78

11.57

11.57

11.57

12.36

12.36

12.36

53

The lim C t does not exist because the values of C approach different values as t approaches 3 from both sides. t o3

34. C t

5.79  0.99 ª¬ª ¬ t  1 º¼º¼ 12

(a)

0

6 4

(b)

t

3

3.3

3.4

3.5

3.6

3.7

4

C

7.77

8.76

8.76

8.76

8.76

8.76

8.76

lim C t

8.76

t o 3.5

(c)

t

2

2.5

2.9

3

3.1

3.5

4

C

6.78

7.77

7.77

7.77

8.76

8.76

8.76

The limit lim C t does not exist because the values of C approach different values as t approaches 3 from both sides. t o3

35. You need f x  3 x  2

x

 1  3

36. You need f x  1



x

 1  3

x  2  0.4. So, take G

0.4. If 0  x  2  0.4, then

f x  3  0.4, as desired.

1 1 x 1

2 x  0.01. Let G x 1

1 1 . If 0  x  2  , then 101 101

1 1 1 1  x  2  Ÿ1  x 11 101 101 101 101 100 102 Ÿ  x 1 101 101 100 Ÿ x 1 ! 101

and you have f x  1

1 1 x 1

2 x 1 101  100 101 x 1

1 100

0.01.

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

54

NOT FOR SALE

Chapter 1

Limits its and Their Properties

37. You need to find  such that 0  x  1  G implies

39. lim 3 x  2

1  1  0.1. That is, x

3 x

f x  1

1  1  0.1 x 1 1  0.1   1  0.1 x 9 1 11   10 10 x 10 10 x ! ! 9 11 10 10 1 ! x 1 ! 1 9 11 1 1 ! x 1 !  . 9 11

xo2

0  x  2 

3 x

x 2  4  0.2. That is,

0.2  x  4  0.2

3.8 

x

 4.2 

2

L

x· § ¨ 4  ¸  2  0.01 2 © ¹



x  0.01 2

1 x  4  0.01 2

0  x  4  0.02

G



0.02, you have

1 x  4  0.01 2 2

x  0.01 2

x· § ¨ 4  ¸  2  0.01 2¹ ©

 4  0.2

3.8  2  x  2  So take G

x· § 40. lim ¨ 4  ¸ x o 4© 2¹

Hence, if 0  x  4  G

2

x

 2  8  0.01

2

x2  1  3

3.8 

you have

f x  L  0.01.

38. You need to find  such that 0  x  2  G implies

2

0.01 , 3

G

3 x  6  0.01

1  1  0.1. x

x2

| 0.0033

3 x  2  0.01

Using the first series of equivalent inequalities, you obtain

4  0.2 

0.01 3

So, if 0  x  2  G

1 1   x 1 11 11 1 1   x 1 . 11 9

f x  3

 2  8  0.01 3 x  2  0.01

1 . Then 0  x  1  G implies 11

f x  1

L

3 x  6  0.01

0.1 

So take G

8

f x  L  0.01.

4.2 4.2  2

4.2  2 | 0.0494.

Then 0  x  2  G implies 





4.2  2  x  2 

4.2  2

3.8  2  x  2 

4.2  2.

Using the first series of equivalent inequalities, you obtain f x  3

x 2  4  0.2.

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

Section 1.2 41. lim x 2  3

1

xo2

x2

44. lim 2 x  5

L

 3  1  0.01

Given H ! 0:

2 x

 5  1  H 2x  6  H

 2 x  2  0.01

2 x 3  H

x  2 x  2  0.01 x  2 

x 3 

0.01 x  2

If you assume 1  x  3, then G

So, if 0  x  2  G

0.01 5

0.002.

0.002, you have

x  2  0.002

So, let G

1 1 0.01  0.01 5 x  2

45. lim

xo5

x2

L

, you have

H

1 2

12 x  1  3 1 x 2

 5 x  5  0.01

1 2

0.01 x 5  x 5

If you assume 4  x  6, then G

1 x  1

4

1

3

Given H ! 0:

 4  29  0.01

 H

 2  H

x  4  H x  4  2H

0.01/11 | 0.0009.

0.01 , you have So, if 0  x  5  G 11 0.01 1 x 5   0.01 11 x 5

So, let G

2H .

So, if 0  x  4  G

2H , you have

x  4  2H 1x 2

x  5 x  5  0.01

 2  H

12 x  1  3

x 2  25  0.01

x 2  4  29

2

 5  1  H

x o 4 2

x 2  25  0.01

x

H

f x  L  H .

f x  L  0.01. 29

H 2.

x 3 

2 x

 0.01

42. lim x  4

G

2

2 2x  6  H

x 2  4  0.01

2

H

So, if 0  x  3  G

x  2 x  2  0.01

x 2  3  1

55

1

x o 3

x 2  4  0.01

x

Finding Limits Graphically and Numerically

 H

f x  L  H .

 0.01

f x  L  0.01. 43. lim x  2

6

xo4

Given H ! 0:

x

 2  6  H x 4  H

So, let G

G

H . So, if 0  x  4  G

H , you have

x 4  H

x

 2  6  H f x  L  H .

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

56

NOT FOR SALE

Chapter 1

46. lim

Limits its and Their Properties

2 x  7

2 5

x o1 5

1

 7

37 5

xo0

Given H ! 0:



2x 5



 7 

2x 5 2 5



2 5

x  H x  H3

5 H 2

So, let G

5 H , you 2

 H

52 x  7  375

 H

H 3 , you have

x  H3

have 3

5 H 2

2 5

3

x  H

x 0  H

f x  L  H .

f x  L  H .

x

50. lim

xo4

4

2 x  2  H

Given H ! 0:

3

x  2

Given H ! 0: 33  H 0  H So, any G ! 0 will work. So, for any G ! 0, you have

0  x  4  G

xo2

5

51. lim x  5 x o 5

 H.

5

x  2

x  2  H. 10

10

x

 5  0

x  5  H

So, any G ! 0 will work.

 H

3H . Then,

x  5  H

0  H

1  1 f x  L

x  2

 x  5  10  H

Given H ! 0: 1  1  H

So, for any G ! 0, you have

x  4  H

x  5  10  H

Given H ! 0:

1

x  2

3H Ÿ x  4  H Ÿ

f x  L  H .

x  2  H

Assuming 1  x  9, you can choose G

33  H

48. lim 1

G

H 3.

So, for 0 x  0 G

x 1 

xo6

x 0  H

x 1  H

So, if 0  x  1  G

47. lim 3

3

3

5 H. 2



0

 H

x 1 

2x 5

x

Given H ! 0:

37 5

So, let G

3

49. lim

So, let G

H.

So for x  5  G

H , you have

 x  5  H  x  5  10  H x  5  10  H

because x

 5  0

f x  L  H .

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE Section 1.2

52. lim x  6

66

xo6

Given H ! 0:

55. lim f x

0

x oS

x 6 0  H

x oS

H.

So for x  6  G

lim f x

x 6  H

4

lim x

S

x oS

57

x 5 3 x  4 1 6

57. f x

H , you have

lim 4

x oS

56. lim f x

x 6  H So, let G

Finding Limits Graphically and Numerically

xo4

x 6 0  H

0.5

f x  L  H . 53. lim x 2  1 x o1

−6 − 0.1667

Given H ! 0:

x2

The domain is >5, 4 ‰ 4, f . The graphing utility

 1  2  H

§ does not show the hole at ¨ 4, ©

x2  1  H

x

58. f x

H

x 1 

x 1

If you assume 0  x  2, then G So for 0  x  1  G x 1 

H 3

H 3.

, you have

−3

The domain is all x z 1, 3. The graphing utility does not

x 1  H

§ 1· show the hole at ¨ 3, ¸. © 2¹

 1  2  H f x  2  H .

59. f x

0

x o 3

5

−4

2

lim f x

x o9

Given H ! 0:

x2

4

1 1 H  H 3 x 1

54. lim x 2  3 x

1· ¸. 6¹

x 3 x2  4 x  3 1 lim f x x o3 2

 1 x  1  H

x2

6

2

x 9 x 3 6

10

 3 x  0  H x x  3  H x 3 

H

0

If you assume 4  x  2, then G So for 0  x  3  G x 3 

10 0

x

H 4

H 4.

The domain is all x t 0 except x 9. The graphing utility does not show the hole at 9, 6 .

, you have

1 1 H  H x 4

x x  3  H x  3x  0  H 2

f x  L  H .

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

58

NOT FOR SALE

Chapter 1

Limits its and Their Properties

64. (a) No. The fact that f 2

x 3 x2  9 1 lim f x x o3 6

60. f x

existence of the limit of f x as x approaches 2. (b) No. The fact that lim f x the value of f at 2.

−9

2S r

65. (a) C

3

C 2S

r −3

The domain is all x z r3. The graphing utility does not § 1· show the hole at ¨ 3, ¸. © 6¹ 25 means that the values of f approach 25 as

x o8

4 has no bearing on

xo2

3

61. lim f x

4 has no bearing on the

xoc

sides of c, but does not have to be defined at c itself. The value of f at c has no bearing on the limit as x approaches c. 63. (i) The values of f approach different numbers as x approaches c from different sides of c:

3

S

| 0.9549 cm

5.5 | 0.87535 cm 2S 6.5 When C 6.5: r | 1.03451 cm 2S So 0.87535  r  1.03451.

(b) When C

(c)

x gets closer and closer to 8. 62. In the definition of lim f x , f must be defined on both

6 2S 5.5: r

2S r

lim

x o3 S

6; H

0.5; G | 0.0796

4 3 2.48 Sr , V 3 4 3 (a) 2.48 Sr 3 1.86 r3

66. V

S

r | 0.8397 in.

y 4

2.45 d

(b)

3

1 x −4 −3 −2 −1 −1

2

1

3

d 2.51

V

4 2.45 d S r 3 d 2.51 3

2

4

0.5849 d

r 3 d 0.5992

0.8363 d r d 0.8431 (c) For H 2.51  2.48 0.03, G | 0.003

−3 −4

(ii) The values of f increase without bound as x approaches c: y

67. f x

1  x 1 x

lim 1  x

1x

e | 2.71828

xo0

6 5

y

4 7

3 2 1 x −3 −2 −1 −1

2

3

4

5

3

−2

(0, 2.7183)

2 1

(iii) The values of f oscillate between two fixed numbers as x approaches c:

x −3 −2 −1 −1

1

2

3

4

5

y 4

x

f (x)

x

f (x)

–0.1

2.867972

0.1

2.593742

–0.01

2.731999

0.01

2.704814

–0.001

2.719642

0.001

2.716942

–0.0001

2.718418

0.0001

2.718146

–0.00001

2.718295

0.00001

2.718268

3

x −4 −3 −2

2

3

4

−3 −4

INSTRUCTOR US USE SE ONLY ONLY Y –0.000001

2.718283 2.71828

0.000001

2.718280

© 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE Section 1.2

x 1  x 1

68. f x

73. False. Let

x

–1

–0.5

–0.1

0

0.1

0.5

1.0

f(x)

2

2

2

Undef.

2

2

2

2

xo0

1  x  1, x z 0, f x

x

 1  x  1 x

f x

­x  4, x z 2 ® 2 x ¯0,

f 2

0

lim f x

Note that for

lim x  4

xo2

2.

­x  4, x z 2 ® 2 x ¯0,

f x

3

lim f x 1

2

−1

x

lim

f x

(2.001, 0.001)

1.998

Using the zoom and trace feature, G 2  G , 2  G 1.999, 2.001 . Note:

x  4 x  2

70.

1 4

x approaches

76. f x

2.002 0

2

0.5 is true.

As x approaches 0.25

(1.999, 0.001)

xo0

1 2

from either side, 0.5.

x

x

lim

0.001. So

0 z 2

x

x o 0.25 0.002

2 and f 2

xo2

75. f x

x

69.

lim x  4

xo2

1

−1

2 z 0

xo2

74. False. Let

y

−2

59

72. True

x

lim f x

Finding Limits Graphically and Numerically

0 is false.

f x

x is not defined on an open interval

containing 0 because the domain of f is x t 0.

x  2 for x z 2.

77. Using a graphing utility, you see that

0.005

sin x 1 x sin 2 x lim 2, etc. xo0 x lim

(2.999, 0.001) (3.001, 0.001)

2.998

xo0

3.002 0

So, lim

xo0

From the graph, G 0.001. So 3  G , 3  G 2.999, 3.001 . Note:

x 2  3x x 3

tan x x tan 2 x lim xo0 x

x for x z 3.

lim

L1 and lim f x xoc

1

xo0

x c has no bearing on the existence of the limit of f x as x o c. xoc

n.

78. Using a graphing utility, you see that

71. False. The existence or nonexistence of f x at

79. If lim f x

sin nx x

So, lim

xo0

2,

tan nx x

etc. n.

L2 , then for every H ! 0, there exists G1 ! 0 and G 2 ! 0 such that

x  c  G1 Ÿ f x  L1  H and x  c  G 2 Ÿ f x  L2  H . Let  equal the smaller of G1 and G 2 . Then for

x  c  G , you have L1  L2

L1  f x  f x  L2 d L1  f x  f x  L2  H  H . Therefore,

L1  L2  2H . Since H ! 0 is arbitrary, it follows that L1

L2 .

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

60

NOT FOR SALE

Chapter 1

80. f x

Limits its and Their Properties

mx  b, m z 0. Let H ! 0 be given. Take

H

G

m

83. Answers will vary. x 2  x  12 xo4 x  4

.

84. lim

H

If 0  x  c  G

, then

7



f 4  >0.1@

n

4  >0.1@

m x c  H

1

4.1

7.1

mx  mc  H

2

4.01

7.01

mx  b  mc  b  H

3

4.001

7.001

4

4.0001

7.0001

n

4  >0.1@

1

3.9

6.9

2

3.99

6.99

3

3.999

6.999

4

3.9999

6.9999

m

which shows that lim mx  b

mc  b.

xoc

81. lim ª¬ f x  Lº¼ xoc

0 means that for every H ! 0 there

exists G ! 0 such that if 0  x  c  G, then

f x  L  0

 H.

n

n



f 4  >0.1@

n

n





This means the same as f x  L  H when 0  x  c  G. So, lim f x xoc

82. (a)

85. The radius OP has a length equal to the altitude z of the h h triangle plus . So, z 1  . 2 2

L.

3x  1 3x  1 x 2  0.01

1 9 x 2  1 x 2  100 9 x4  x2 

1 100

1 10 x 2  1 90 x 2  1 100

Area triangle Area rectangle

1 § h· b¨1  ¸ 2 © 2¹

bh

h 2

2h

1

5 h 2

10 x 2  1  0 and 90 x 2  1  0.

Let a, b

bh

Because these are equal,

So, 3x  1 3x  1 x 2  0.01 ! 0 if 1 § , ¨ 90 ©

1 § h· b¨1  ¸ 2 © 2¹

1 · ¸. 90 ¹

h

For all x z 0 in a, b , the graph is positive. You can

1 2 . 5

P

verify this with a graphing utility.p (b) You are given lim g x xoc

L ! 0. Let

1 L. There exists G ! 0 such that 2 0  x  c  G implies that

H

h

O

b

L . That is, 2 L L   g x  L  2 2 3L L g x   2 2 g x  L  H

For x in the interval c  G , c  G , x z c, you have g x !

L ! 0, as desired. 2

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE Section 1.3

Evaluating Limits Analytically

86. Consider a cross section of the cone, where EF is a diagonal of the inscribed cube. AD

side of the cube. Then EF By similar triangles, EF AG BC AD

A

E

3 2x

Solving for x,





3 2  2x x

2. Let x be the length of a

x 2.

3 x 3

x 2 2

3, BC

61

6  2x

B

G

D

F

C

6 6 3 2  2

9 2 6 | 0.96. 7

Section 1.3 Evaluating Limits Analytically 5

1.

4.

−4

8

10

−5

10

−3

− 10

(a) lim h x

0

xo4

(b) lim h x

f t

5

x o 1

(a) lim f t

0

t o4

(b) lim f t

10

2.

t t  4

5

t o 1

0

10

−5



g x



x 9

(a) lim g x

2.4

(b) lim g x

4

xo4 xo0

x o 2

8

2

4

7. lim 2 x  1

16

2 0  1

xo0

8. lim 3x  2 x o 3

3

x o 3

−␲



10. lim  x 2  1 x o1

−4

f x

(a) lim f x xo0

(b)

§ ¨ ©

S· ¸ 6¹

 1  1 2

99

0 2

18  12  1

0 12. lim 3 x3  2 x 2  4

x 1

x o3

14. lim

xo4

3

3

31

x  4

15. lim x  3

3

2

x o 4

 3

2

5

2

4 4

4

7

3 1  2 1  4

x o1

13. lim

0

2 3  4 3  1

x o3

lim f x | 0.524

x oS 3

7

 3 3

2

11. lim 2 x 2  4 x  1

x cos x

1

3 3  2

9. lim x 2  3 x

4

3.

23

xo2

6. lim x 4

x 3

12

5. lim x3

2 2

1

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

62

NOT FOR SALE

Chapter 1

16. lim 2 x  1

Limits its and Their Properties ª¬2 0  1º¼

3

xo0

1 17. lim xo2 x

3

2 42  3 4  1

26. (a) lim f x

1

xo4

(b) lim g x

1 2

21  6

3

x o 21

(c) lim g f x

x 19. lim 2 x o1 x  4

20. lim

x o1

21. lim

xo7

22. lim

xo2

2 3  2

2

27.

1 12  4

2x  3 x 5

1 5

2 1  3

x  2 x  4 x o1

(b) lim g x xo4

21 3

2 2 2 4

2 2

51 43

24. (a) lim f x xo4

42

x o3

(c) lim g f x x o1

37. (a) lim ¬ª5 g x ¼º

2

g 3

2

xoc

g x

lim f x lim g x

xoc

xoc

(c) lim ¬ª f x g x ¼º xoc

xoc

f x

g x

cos

S

sin

S 2

xoc

§ 3· 4¨ ¸ © 2¹ xoc

ª lim f x ºª lim g x º »«x o c ¬«x o c ¼¬ ¼»

lim g x

2

0

cos 3S

1

1

lim sin x

sin

5S 6

1 2

lim cos x

cos

5S 3

1 2

§S x · 35. lim tan ¨ ¸ x o3 © 4 ¹

tan

3S 4

1

§S x · 36. lim sec¨ ¸ xo7 © 6 ¹

sec

7S 6

2 3 3

x o 5S 6

x o 5S 3

3 2

3 2

5 6

6

lim f x  lim g x

xoc

lim f x

xoc

1 2

3

3 2

4 lim f x

(b) lim ª¬ f x  g x º¼ xoc

(d) lim

0

10

lim f x  lim g x

xoc

xoc

38. (a) lim ª¬4 f x º¼ xoc

5 2

ª lim f x º ª lim g x º ¬« x o c ¼» «¬x o c ¼»

(c) lim ª¬ f x g x º¼ xoc xoc

16

31

xoc

f x

tan S

32. lim cos 3x

34.

4

1

2

sec 0

64

3

(b) lim ¬ª f x  g x º¼

(d) lim

S

3

31. lim sec 2 x

33.

g 4

5 lim g x

xoc

2

x oS

 7

4 1

(b) lim g x

Sx

xo0

4

g 4

x o 3

x o1

1

16

(c) lim g f x 25. (a) lim f x

30. lim sin

7

3

sin

64

3

x o 3

Sx

xo2

g f 1

x o1

29. lim cos x o1

7  2

(c) lim g f x

(b) lim g x

x oS

3 7

3x x  2

23. (a) lim f x

28. lim tan x 1 6

15

lim sin x

x oS 2

3

g 21

xo4

2 18. lim x o 3 x  2

21

32 12

3 1  2 2

§ 3 ·§ 1 · ¨ ¸¨ ¸ © 2 ¹© 2 ¹

2

3 4

3

INSTRUCTOR U USE ONLY xoc

© 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE Section 1.3

39. (a) lim ª¬ f x º¼ xoc

ª lim f x º ¬« x o c ¼»

3

f x

(b) lim

xoc

xoc

ª lim f x º ¬«x o c ¼»

18

lim f x

lim 18

xoc

3

27

lim f x

8

27

xo0

(b) lim g x x o 1

−4

2 x2  x  3 and g x x 1 1.

at x

lim f x

729

xo0

lim g x

x o 1

4

23

27

0 1

lim f x

23

9 −8

4

−8

x3  8 and g x x  2 2.

47. f x

1

1  1

x o 1

2 x  3 agree except

5

x o 1

x2  x agree except at x

2

 x  3x agree except at x 2

 x  3 and h x

42. f x

x

lim f x

2

4

0.

(a) lim g x

lim g x

x o 1

−3

46. f x

2

x  1 agree except at

3

3

2

63

1.

x o 1

12

3 2

ª lim f x º ¬« x o c ¼»

x  1 and g x

x

2

4 3 2

x2  1 and g x x 1

45. f x

64

27 18

ª lim f x º ¬«x o c ¼»

23

32

xoc

xoc

(d) lim ª¬ f x º¼ xoc

at x

lim f x

lim g x

xo2

x 2  2 x  4 agree except

12

xo2 12

0.

(a) lim h x xo2

(b) lim h x xo0

43. f x

x

lim f x

2  3

1

lim f x

0  3

3

xo2 xo0

−9

x3  x agree except at x 1

x x  1 and g x 1.

(a) lim g x x o1

(b) lim g x x o 1

lim f x x o1

lim f x

x o 1

1 and f x x 1

44. g x

x

3 4

lim f x

f x

(c) lim ª¬ f x º¼ xoc

x

3 lim f x

3

2

41. f x

4

32

xoc

xoc

lim f x

xoc

40. (a) lim 3 f x

(b) lim

4 3

xoc

(c) lim ¬ª3 f x ¼º (d) lim ª¬ f x º¼ xoc

3

Evaluating Limits Analytically

9 0

x3  1 and g x x 1

48. f x

x

1.

lim f x

2

3

x o 1 7

0 x agree except at x2  x

−4

4 −1

(a) lim f x does not exist. x o1

xo0

lim g x

x o 1

0.

(b) lim f x

x 2  x  1 agree except at

1

49. lim

x  x

50. lim

3x  2x

x o 0 x2

x o 0 x2

lim

xo0 x

lim

x

xo0 x

x  1 3x  2

x

lim

xo0 x

lim

1 1

xo0 x

3  2

1 3 2

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

64

NOT FOR SALE

Chapter 1

51. lim

Limits its and Their Properties

x  4  16

lim

x o 4 x2

xo4

x  4 x  4 x  4

lim

xo4 x

3 x x o3 x2  9

xo4

x 5 3 x  4

56. lim

x 1 2 x 3

57. lim

x 5  x

xo0

lim

x o3

5

lim

xo0

2 x  x

2

lim

1 1   x 4 4 60. lim xo0 x

61. lim

5 2

2 x  2 2 x 

lim

4  x  4 4 x  4

1 x 5 3

xo0

lim

x o3

x  5  x 5 



˜

lim

x  2 3

5 6

x  4 x  1 x  4 x  2 x  1 3 lim x o 4 x  2 6

5 6

lim

xo4

1 2

1 6

x 3  3 ¬ª x  1  2¼º

lim

x o3

1 x 1 2

1 4

x

3  x 3 x

1 5

2 5

5 10

2 2

1 2 x 

lim

xo0

1 9 3

5 5

2 x  2 x 



x

1 x 5 

lim

xo0

2 x

lim

3  x 3 x

54. lim

lim



˜

x 5 

3  3  x

lim

xo0

1 2

1

3  x 3

2 2



2 4

1 9

xo0

x 1 lim x o 0 4 x  4

2 x  'x  2 x 'x

'x o 0



x2  5x  4 x o 4 x2  2x  8

1 6

xo4

3

 5  5

lim

xo0

5

2 x  x

lim

xo0

xo0

1 1  3 3 x  59. lim xo0 x



x



x 1 2 x 1 2

x 5  x

lim

x  3 x  2 x  3 x  3

x  5  3 x 5 3

x 1 2 ˜ x 3

xo0 x

58. lim

1 x o3 x  3 lim

x  5  9 x  4 x  5 

xo0

lim

x o 3

x o 3 x

x 5 3 ˜ x  4

lim

xo4

lim

x2  x  6 x2  9

1 8

lim

xo4

x o3

x o 3

3 x x o 3 x  3 x  3

52. lim

55. lim

1  4

53. lim



1 16

2 x  2'x  2 x 'x lim 2 2

lim

'x o 0

'x o 0

62. lim

x

'x o 0

2

'x

'x o 0

63. lim

 'x  x 2

x

x 2  2 x'x  'x  x 2 2

lim

'x o 0

lim

'x

 'x  2 x  'x  1  x 2  2 x  1

'x o 0

2

'x

'x 2 x  ' x

lim 2 x  'x

'x

'x o 0

2x

x 2  2 x'x  'x  2 x  2'x  1  x 2  2 x  1 2

lim

'x o 0

lim 2 x  'x  2

'x o 0

'x 2x  2

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

Section 1.3

x

64. lim

 'x  x3

2

lim

'x



'x 3 x 2  3 x'x  'x

lim

'x

ª§ sin x ·§ 1 ·º lim «¨ ¸¨ ¸» x o 0 © x ¹© 5 ¹ ¬ ¼

sin x x o 0 5x

66. lim

3 1  cos x

xo0

67. lim

sin x 1  cos x

1· ¸ © 5¹

lim

cos T tan T

lim

T

T o0





lim 3x 2  3 x'x  'x

'x o 0

I oS

73.

3 0

0 74.

lim

cos x x

3x 2

S

1

x oS 2

1  tan x x  cos x

lim

x o S 4 sin

x o S 4 sin

 sin x  cos x

lim

x sin x  cos x

1

lim

x o S 4 cos

1

T

cos x  sin x x cos x  cos 2 x

x o S 4 cos

0

sin T

T o0



lim sin x

x o S 2 cot

lim

2

S 1

72. lim I sec I

1 5

ª sin x 1  cos x º ˜ » x x ¼

1 0 68. lim

2

x o 0« ¬

x2

xo0

1 §¨

ª § 1  cos x ·º lim «3¨ ¸» xo0 x «¬ © ¹»¼

x

3

'x

'x o 0

'x o 0

65. lim

65

x3  3 x 2 'x  3x 'x  'x  x3

3

'x o 0

Evaluating Limits Analytically

x

lim sec x

x oS 4

ª sin x º lim sin x» x o 0« ¬ x ¼

sin 2 x 69. lim xo0 x tan 2 x xo0 x

sin 2 x x o 0 x cos 2 x

70. lim

lim

1 0

1 sin 0

 2

0

ª sin x sin x º lim « ˜ » xo0 cos 2 x ¼ ¬ x

75. lim

sin 3t 2t

76. lim

sin 2 x 3x

t o0

0

§ sin 3t ·§ 3 · lim¨ ¸¨ ¸ 3t ¹© 2 ¹

t o 0©

1 

ho0

cos h

2

h

lim

77. f x

x  2  x

3 2

xo0

ª1  cos h 1  cos h º» h ¼

§1· 2 1 ¨ ¸ 1 © 3¹

h o 0« ¬

0 0

3· ¸ © 2¹

ª § sin 2 x ·§ 1 ·§ 3x ·º lim «2¨ ¸» ¸¨ ¸¨ ¬ © 2 x ¹© 3 ¹© sin 3 x ¹¼

x o 0 sin

71. lim

1 §¨

2 3

0

2

x

–0.1

–0.01

–0.001

0

0.001

0.01

0.1

f (x)

0.358

0.354

0.354

?

0.354

0.353

0.349

It appears that the limit is 0.354. 2

−3

3

−2

The graph has a hole at x Analytically, lim

xo0

x  2  x

0. 2

x  2  x

lim

xo0

lim

xo0 x



2

x  2 2 x  2 

x  2  x  2 

˜

2



lim

xo0

2 2

1 x  2 

2

1 2 2

2 | 0.354. 4

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

66

NOT FOR SALE

Chapter 1

78. f x

Limits its and Their Properties

4  x x  16

x

15.9

15.99

15.999

16

16.001

16.01

16.1

f (x )

–0.1252

–0.125

–0.125

?

–0.125

–0.125

–0.1248

It appears that the limit is –0.125. 1

0

20

−1

The graph has a hole at x

16.

4 x x o16 x  16

Analytically, lim

79. f x

lim

x o16

4  x x  4 x  4

1 x  4

lim

x o16

1  . 8

1 1  2 x 2 x

x

–0.1

–0.01

–0.001

0

0.001

0.01

0.1

f (x )

–0.263

–0.251

–0.250

?

–0.250

–0.249

–0.238

It appears that the limit is –0.250. 3

−5

1

−2

The graph has a hole at x

0.

1 1   x 2 2 Analytically, lim xo0 x

80. f x

lim

2  2  x

xo0

2 2  x

˜

1 x

lim

x

2  x

xo0 2

˜

1 x

lim

1

1  . 4

2  x

xo0 2

x5  32 x  2

x

1.9

1.99

1.999

1.9999

2.0

2.0001

2.001

2.01

2.1

f (x )

72.39

79.20

79.92

79.99

?

80.01

80.08

80.80

88.41

It appears that the limit is 80. 100

−4

3 −25

The graph has a hole at x x5  32 xo2 x  2

Analytically, lim

2. lim

x

 2 x 4  2 x3  4 x 2  8 x  16 x 2

xo2

lim x 4  2 x3  4 x 2  8 x  16

xo2

80.

INSTRUCTOR USE ONLY Hint Use long division to fact factor x5  32. ) (Hint:

© 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE Section 1.3

81. f t

Evaluating Limits Analytically

67

sin 3t t

t

–0.1

–0.01

–0.001

0

0.001

0.01

0.1

f (t)

2.96

2.9996

3

?

3

2.9996

2.96

It appears that the limit is 3. 4

− 2␲

2␲ −1

The graph has a hole at t Analytically, lim

t o0

82. f x

sin 3t t

0. § sin 3t · lim 3¨ ¸ © 3t ¹

3 1

t o0

3.

cos x  1 2x2

x

–1

–0.1

–0.01

0.01

0.1

1

f (x)

–0.2298

–0.2498

–0.25

–0.25

–0.2498

–0.2298

It appears that the limit is –0.25. 1

−␲



−1

The graph has a hole at x Analytically,

0.

cos x  1 cos x  1 ˜ 2x cos x  1

cos 2 x  1 2 x 2 cos x  1 sin 2 x 2 x cos x  1 2

sin 2 x 1 ˜ x2 2 cos x  1

ª sin 2 x º 1 lim « 2 ˜ » 2 cos x  1 »¼ ¬ x

x o 0«

§ 1 · 1¨ ¸ © 4¹



1 4

0.25

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

68

NOT FOR SALE

Chapter 1

Limits its and Their Properties

sin x 2 x

83. f x

x

–0.1

–0.01

–0.001

0

0.001

0.01

0.1

f (x)

–0.099998

–0.01

–0.001

?

0.001

0.01

0.099998

It appears that the limit is 0. 1

− 2␲

2␲

−1

The graph has a hole at x sin x xo0 x

0. § sin x 2 · lim x¨ ¸ xo0 © x ¹

2

Analytically, lim

0 1

0.

sin x 3 x

84. f x

x

–0.1

–0.01

–0.001

0

0.001

0.01

0.1

f (x)

0.215

0.0464

0.01

?

0.01

0.0464

0.215

It appears that the limit is 0. 2

−3

3

−2

The graph has a hole at x Analytically, lim

sin x x

xo0 3

85. lim

f x  'x  f x

86. lim

f x  'x  f x

'x o 0

'x o 0

'x

'x

0. lim

3

xo0

lim

§ sin x · x2 ¨ ¸ © x ¹

'x o 0

'x

lim

'x

x  'x  'x

lim

'x o 0

lim

87. lim

0.

3 x  'x  2  3 x  2

'x o 0

'x o 0 'x

f x  'x  f x

0 1



'x o 0

x

x  'x 

x  'x  'x

lim

'x o 0

x  'x  x x



3 x  30 x  2  3x  2 'x

lim

'x o 0

x

1 x  'x 

˜

x  'x  x  'x  1 x 2 x

lim

'x o 0

3'x 'x

3

x x

1 1  x  3 lim x  'x  3 'x o 0 'x x  3  x  'x  3 1 lim ˜ 'x o 0 x  'x  3 x  3 'x lim

x

'x  'x  3 x  3 'x

lim

x

1  'x  3 x  3

'x o 0

'x o 0

1

x  3

2

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE Section 1.3

88. lim

f x  'x  f x 'x

'x o 0

lim

'x o 0

lim

x

 'x  4 x  'x  x 2  4 x 2

'x 'x 2 x  'x  4 'x

'x o 0

89. lim 4  x 2 d lim f x d lim 4  x 2 xo0

xo0

Evaluating Limits Analytically

xo0

4 d lim f x d 4

lim

'x o 0

lim 2 x  'x  4

xo0

95. f x

x sin

4. − 0.5

b d lim f x d b xoa

xoa

91. f x

1 x

0.5

0.5

90. lim ª¬b  x  a º¼ d lim f x d lim ª¬b  x  a º¼ xoa xoa xoa

Therefore, lim f x

x 2  2 x'x  'x 2  4 x  4'x  x 2  4 x 'x

2x  4

'x o 0

xo0

Therefore, lim f x

69

b.

− 0.5

1· § lim ¨ x sin ¸ x¹

96. h x

x cos x

0

x o 0©

x cos

4

1 x

0.5

− 3␲ 2

3␲ 2

− 0.5

0.5

−4

lim x cos x

92. f x

− 0.5

0

xo0

1· § lim ¨ x cos ¸ x¹

x o 0©

x sin x 6

97. You say that two functions f and g agree at all but one point (on an open interval) if f x g x for all x in

− 2␲

2␲

x2  1 and g x x 1 except x 1.

0

xo0

93. f x

the interval except for x 98. f x

−2

lim x sin x

x sin x

−2␲

2␲

lim

xoc

94. f x

x  1 agree at all points

f x

g x

for which lim f x

−6

lim x sin x

c, where c is in the interval.

99. An indeterminant form is obtained when evaluating a limit using direct substitution produces a meaningless fractional expression such as 0 0. That is,

6

lim g x

xoc

0

xo0

0

xoc

0

100. If a function f is squeezed between two functions h and g, h x d f x d g x , and h and g have the same limit

x cos x

L as x o c, then lim f x exists and equals L. xoc

6

− 2␲

2␲

−6

lim x cos x

xo0

0

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

70

NOT FOR SALE

Chapter 1

101. f x

Limits its and Their Properties

x, g x

sin x, h x

103. s t

sin x x

3

lim

f g

t o2

h

−5

16t 2  500 s 2  s t 2 t

436  16t 2  500 lim t o2 2t

−3

lim

When the x-values are "close to" 0 the magnitude of f is approximately equal to the magnitude of g. So, g f | 1 when x is "close to" 0. x, g x

2t

t o2

5

102. f x

16 2  500  16t 2  500 2

lim

sin 2 x x

sin 2 x, h x

t o2

lim

16 t 2  4

2 t 16 t  2 t  2

2t lim 16 t  2

t o2 t o2

64 ft/sec

The wrench is falling at about 64 feet/second.

2

g −3

3

h f −2

When the x-values are "close to" 0 the magnitude of g is "smaller" than the magnitude of f and the magnitude of g is approaching zero "faster" than the magnitude of f. So, g f | 0 when x is "close to" 0. 104. s t

16t 2  500

§5 5 · s¨¨ ¸  s t 2 ¸¹ lim © §5 5 · 5 5 t o ¨¨ ¸¸ t © 2 ¹ 2

500 16

0 when t

lim

5 5 sec. The velocity at time a 2

5 5 is 2

0  16t 2  500

§5 5 · t o ¨¨ ¸¸ © 2 ¹

5 5 t 2 125 · § 16¨ t 2  ¸ 4 ¹ © lim §5 5 · 5 5 t o ¨¨ ¸¸ t © 2 ¹ 2 § 5 5 ·§ 5 5· 16¨¨ t  ¸¨ t  ¸ ¸¨ 2 2 ¸¹ © ¹© lim §5 5 · 5 5 t o ¨¨ ¸¸ t © 2 ¹ 2 ª § 5 5 ·º lim «16¨¨ t  ¸» 5 5« 2 ¸¹»¼ to © ¬ 2

80 5 ft/sec | 178.9 ft/sec.

The velocity of the wrench when it hits the ground is about 178.9 ft/sec.

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE Section 1.3

105. s t

lim

Evaluating Limits Analytically

71

4.9t 2  200

3t

t o3

lim

4.9 3  200  4.9t 2  200

lim

4.9 t 2  9

2

s 3  s t

3t

t o3

t o3

lim

3t 4.9 t  3 t  3

t o3

3t

lim ª 4.9 t  3 º¼ t o 3¬ 29.4 m/sec The object is falling about 29.4 m/sec. 106. 4.9t 2  200

lim

s a  s t

20 5 sec. The velocity at time a 7

20 5 is 7

0  ª¬4.9t 2  200º¼ t oa a t 4.9 t  a t  a lim t oa a t lim

a t

t oa

200 4.9

0 when t

ª § 20 5 ·º lim «4.9¨¨ t  ¸» 20 5 « 7 ¸¹»¼ to © ¬ 7

28 5 m/sec | 62.6 m/sec.

The velocity of the object when it hits the ground is about 62.6 m/sec. 107. Let f x

1 x and g x

1/ x. lim f x and

111. If b 0, the property is true because both sides are equal to 0. If b z 0, let H ! 0 be given. Because

x o0

lim g x do not exist. However,

lim f x

x o0

ª 1 § 1 ·º lim ª f x  g x º¼ lim «  ¨  ¸» x o 0¬ xo0 x © x ¹¼ ¬ and therefore does not exist.

xoc

lim >0@

xo0

f x  L  H b whenever 0  x  c  G . So,

0

whenever 0  x  c  G , we have b f x  L  H or

108. Suppose, on the contrary, that lim g x exists. Then, xoc

because lim f x exists, so would lim ª¬ f x  g x º¼ , xoc xoc which is a contradiction. So, lim g x does not exist. xoc

109. Given f x

112. Given lim f x xoc

lim x

xoc

n

Now f x  0

f x

ª lim xº ª lim x n 1 º ¬«x o c ¼» «¬x o c ¼» c ª« lim xº» ª« lim x n  2 º» ¬x o c ¼ ¬x o c ¼ cn.

 M f x d f x g x d M f x

113. c ª« lim xx n  2 º» ¬x o c ¼ c c lim xx n  3 xoc

0.

xoc

x , n is a positive integer, then

lim xx n 1

f x  0  H for

x  c  G . Therefore, lim f x

n

xoc

"

0:

f x  0  H whenever 0  x  c  G .

0  H for

every H ! 0, any value of G ! 0 will work. 110. Given f x

bL.

For every H ! 0, there exists G ! 0 such that

a G ! 0 such that f x  b  H whenever b b

bf x  bL  H

which implies that lim ª¬bf x º¼ xoc

b, show that for every H ! 0 there exists

x  c  G . Because f x  b

L, there exists G ! 0 such that



lim  M f x

xoc

d



lim f x g x d lim M f x

xoc

xoc



 M 0 d lim f x g x d M 0 xoc

0 d lim f x g x d 0 xoc

Therefore, lim f x g x xoc

0.

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

72

Chapter 1

NOT FOR SALE

Limits its and Their Properties

If lim f x

114. (a)

0, then lim ª¬ f x º¼ xoc

xoc

122. False. Let

0.

f x

 f x d f x d f x xoc

and g x

x2.

Then f x  g x for all x z 0. But

lim ª f x º¼ d lim f x d lim f x

x oc¬

1 x2 2

lim f x

xoc

0 d lim f x d 0

lim g x

xo0

0.

xo0

xoc

Therefore, lim f x

0.

xoc

(b) Given lim f x

123. lim

x o0

1  cos x x

lim

x o0

1  cos 2 x x o 0 x 1  cos x

L:

xoc

1  cos x 1  cos x ˜ x 1  cos x sin 2 x x o 0 x 1  cos x

lim

For every H ! 0, there exists G ! 0 such that f x  L  H whenever 0  x  c  G . Since

lim

x o0

f x  L d f x  L  H for x  c  G , then lim f x

sin x sin x ˜ x 1  cos x

sin x º ª sin x º ª » «lim » «lim ¬x o 0 x ¼ ¬x o 01  cos x ¼

L.

xoc

lim

1 0

0

115. Let

f x

­ 4, if x t 0 ® ¯4, if x  0

lim f x

xo0

lim 4

4.

xo0

lim f x does not exist because for

xo0

x  0, f x

116. lim f x x o 2

4 and for x t 0, f x lim f x

lim f x

x o 2

The value of f at x

xo2

124. f x

­0, if x is rational ® ¯1, if x is irrational

g x

­0, if x is rational ® ¯x, if x is irrational

lim f x does not exist.

xo0

4.

No matter how "close to" 0 x is, there are still an infinite number of rational and irrational numbers so that lim f x does not exist.

3

xo0

lim g x

2 is irrelevant.

0

xo0

sin x 118. False. lim x oS x

0

when x is "close to" 0, both parts of the function are "close to" 0.

2

117. The limit does not exist because the function approaches 1 from the right side of 0 and approaches 1 from the left side of 0.

−3

3

sec x  1 x2

(a) The domain of f is all x z 0, S /2  nS .

−2

0

S

125. f x

2

(b) − 3␲ 2

119. True.

3␲ 2

120. False. Let

f x

­x x z 1 , ® ¯3 x 1

Then lim f x x o1

−2

c

The domain is not obvious. The hole at x apparent. 1 (c) lim f x xo0 2

1.

1 but f 1 z 1.

121. False. The limit does not exist because f x

approaches 3 from the left side of 2 and approaches 0 from the right side of 2.

(d)

4

−3

sec x  1 x2

tan 2 x x 2 sec x  1

6

−2

sec x  1 sec x  1 ˜ x2 sec x  1

sec x  1 x o0 x2

So, lim

0 is not

sec 2 x  1 x sec x  1 2

1 § sin 2 x · 1 ¨ ¸ cos 2 x © x 2 ¹ sec x  1

1 § sin 2 x · 1 ¨ 2 ¸ x o 0 cos 2 x x sec x 1 © ¹

lim

§1· 1 1 ¨ ¸ © 2¹

1 . 2

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE Section 1.4

126. (a) lim

xo0

1  cos x x2

lim

xo0

lim

Continuity and OneOne One-Sided Limits

73

1  cos x 1  cos x ˜ 1  cos x x2 1  cos 2 x 1  cos x

x o 0 x2

sin 2 x 1 ˜ x o 0 x2 1  cos x lim

· ¸ © 2¹

1 §¨

1 2

(b) From part (a), 1  cos x 1 1 1 | Ÿ 1  cos x | x 2 Ÿ cos x | 1  x 2 for x | 0. x2 2 2 2

(c) cos 0.1 | 1 

1 2 0.1 2

0.995

(d) cos 0.1 | 0.9950, which agrees with part (c). 127. The graphing utility was set in degree mode, instead of radian mode.

Section 1.4 Continuity and One-Sided Limits lim f x

3

(b) lim f x

3

1. (a)

x o 4 x o 4

(c) lim f x xo4

(b)

xo2

lim f x

lim f x

(b) lim f x

0

x o 3

(c) lim f x x o3

(b)

3

lim f x

3

x o 3

(c) lim f x x o 3

2

x o 1

The function is NOT continuous at x 2. x o 8

1 x 8

8. lim  x o 5

0

lim f x

x o 3

lim f x

2.

(c) lim f x does not exist.

The function is NOT continuous at x 4. (a)

0

x o 1

7. lim 0

lim f x

x o 1

(b)

2

lim f x

x o 3

6. (a)

2

The function is continuous at x 3. (a)

The function is NOT continuous at x

4 and is continuous

2

x o 2 x o 2

3

x o 2

(c) lim f x does not exist

x o 2

(c) lim f x

3

x o 2

(b) lim f x

3

The function is continuous at x on f, f . 2. (a)

lim f x

5. (a)

x 5 x 2  25

10. lim

2  x x2  4

x o 5

x o 2

11.

3

The function is NOT continuous at x f 3 4 z lim f x .

3 because

3 x 5

9. lim

3.

1 88

x

lim

x o 3

x 9

x x 9 2

2



1 16

3 55



3 10

lim

1 x  5

1 10

lim 

1 x  2



x o 5

x o 2

1.

1 4

does not exist because

decreases without bound as x o 3.

x o 3

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

74

NOT FOR SALE

Chapter 1

12. lim

x o 9

Limits its and Their Properties

x 3 x 9

lim

x o 9

lim

x o 9

x 3 ˜ x 9 x 9



x

lim

x o 9

1 1   ' x x x 15. lim 'x 'x o 0

x  3 x 3 x 3

1 x 3

1 6

x  x  'x x x  'x

'x o 0

x o 0



 9

lim

13. lim

˜

1 'x

'x 1 ˜ x x  'x 'x

lim

1 x x  'x

1 x x  0

16.

lim

 'x  x  'x  x 2  x 2

'x

'x o 0

x o10

lim

'x o 0

'x o 0

x

lim

14.



x

x x

lim

x o 0

x

x  10

1

lim

x  10

x o10

x  10 x  10

1

1 x2

lim

x 2  2 x 'x  'x  x  'x  x 2  x

lim

2 x 'x  'x  'x

2

'x

'x o 0 2

'x lim 2 x  'x  1

'x o 0 'x o 0

2x  0  1

17. lim f x

lim

x o 3

x o 3

x o 2

lim x 2  4 x  6

lim f x

x o 2

lim f x x o1

20. lim f x x o1

2

2 2  2

2

25. lim 2  a xb does not exist because x o3

lim 2  a xb

x o 3

2  3

5

2  4

6.

and lim x  1

x o1 x o1

2

2

19. lim f x lim f x

x o 2

x o 2

x o 2

lim f x

24. lim 2 x  a xb

5 2

lim  x 2  4 x  2

18. lim f x

xo2

x  2 2

2x  1

x o1

lim x 3  1

x o1

lim 2  a xb

x o 3

2

c x f· § 26. lim¨1  dd gg¸ x o1 e 2 h¹ ©

2

1  1

2

2 lim 1  x

x o1

27. f x 0

1 x2  4

has discontinuities at x 2 and x f 2 and f 2 are not defined.

21. lim cot x does not exist because

2 because

x oS

lim cot x and lim cot x do not exist.

x oS 

22.

x oS 

lim sec x does not exist because

x o S 2 

23. lim 5a xb  7 x o 4

axb

lim sec x do not exist.

3 for 3 d x  4

8

1 because f 1 is not

defined.

x o S 2 

5 3  7

x2  1 x 1

has a discontinuity at x

x oS 2

lim sec x and

28. f x

29. f x

axb  2

x

has discontinuities at each integer k because lim f x z lim f x . x ok

x ok

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE Section 1.4

x 1 ­x, ° x 1 has a discontinuity at 30. f x ®2, °2 x  1, x ! 1 ¯ x 1 because f 1 2 z lim f x 1.

has a nonremovable discontinuity at x 6 because lim f x does not exist, and has a removable x o 6

discontinuity at x

49  x is continuous on >7, 7@. 2

32. f t

33. lim f x

3

x o 0

lim f x

lim

x o6

9  t 2 is continuous on >3, 3@.

3

lim f x . f is continuous on >1, 4@.

x o 0

47. f x

xo6 x

x

6 because 1  6

x  2  2 x  5

x o5

2 because

discontinuity at x 35. f x 36. f x

3 has a nonremovable discontinuity at x  2

x 37. f x 38. f x

0.

2. x  9 is continuous for all real x. 2

x 2  2 x  1 is continuous for all real x.

1 4  x2

39. f x

1

discontinuities at x

lim f x

48. f x

x

x o 2 x

1 5

1  . 7

x 1  2 x  1

has a nonremovable discontinuity at x 2 because lim f x does not exist, and has a removable x o 2

discontinuity at x lim f x

1 because 1  2

lim

x o1 x

1 . 3

has nonremovable

r2 because lim f x and

x  7

49. f x

x  7

xo2

lim f x do not exist.

lim

x o 2

x o1

2  x 2  x

1 . 12

has a nonremovable discontinuity at x 5 because lim f x does not exist, and has a removable

34. g 2 is not defined. g is continuous on >1, 2 .

6 has a nonremovable discontinuity at x x

75

x 6 x 2  36

46. f x

x o1

31. g x

Continuity and OneOne One-Sided Limits

has a nonremovable discontinuity at x lim f x does not exist.

x o 2

7 because

x o 7

1 is continuous for all real x. 2 x 1

40. f x 41. f x 42. f x

3x  cos x is continuous for all real x. cos

Sx 2

is continuous for all real x.

x is not continuous at x 0, 1. Because x2  x x 1 for x z 0, x 0 is a removable x2  x x 1 discontinuity, whereas x 1 is a nonremovable discontinuity.

43. f x

44. f x

x

x has nonremovable discontinuities at x2  1 1 and x 1 because lim f x and lim f x do x o1

x o 1

not exist. 45. f x

50. f x

x

x 8

has a nonremovable discontinuity at x 8 8 because lim f x does not exist. x o8

51. f x

­ x, x d 1 ® 2 ¯x , x ! 1

has a possible discontinuity at x 1.

f 1

1

lim f x

2.

lim x

x o1

x o1

lim f x

lim x 2

x o1

3.

f 1

1.

x o1

1½ ° ¾lim f x 1° x o1 ¿

1

lim f x x o1

f is continuous at x real x.

1, therefore, f is continuous for all

x is continuous for all real x. x2  1

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

76

Chapter 1

Limits its and Their Properties

­2 x  3, x  1 ® 2 x t1 ¯x ,

52. f x

has a possible discontinuity at x 1.

f 1

2

1

1

lim f x

2.

lim 2 x  3

x o1

lim f x

f 1

lim x 2

x o1

1

1

lim f x x o1

f is continuous at x real x. 53. f x

1½ ° f x ¾lim ° x o1 ¿

x o1

x o1

3.

1.

1, therefore, f is continuous for all

­x °  1, x d 2 ®2 °3  x, x ! 2 ¯

has a possible discontinuity at x 1.

f 2

2.

x o 2

2 1 2

2

½ 2° ° f x does not exist. ¾ xlim o2 1° °¿

§x · lim ¨  1¸ ¹ lim 3  x

lim f x

x o 2 © 2

lim f x

x o 2

2.

x o 2

Therefore, f has a nonremovable discontinuity at x 54. f x

x d 2 ­2 x, ® 2 x 4 x 1, x ! 2   ¯

has a possible discontinuity at x 1.

f 2

2 2

lim f x

2.

2.

4 lim 2 x

x o 2

x o 2

4

lim x 2  4 x  1

lim f x

x o 2

x o 2

½ ° ¾ lim f x does not exist. 3° x o 2 ¿

Therefore, f has a nonremovable discontinuity at x 55. f x

2.

­ Sx °tan , 4 ® ° x, ¯

2.

x 1 x t1

­ Sx °tan , 1  x  1 4 ® ° x, x d 1 or x t 1 ¯ has possible discontinuities at x 1. 2. 3.

f 1 lim f x

x o 1

f 1

1, x

f 1

1

1

x o1

lim f x

f is continuous at x

1

lim f x

1 x o1

1.

f 1

lim f x x o1

r1, therefore, f is continuous for all real x.

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE Section 1.4

­ Sx °csc , 6 ® °2, ¯

56. f x

Continuity and OneOne One-Sided Limits

77

x 3 d 2 x 3 ! 2

­ Sx °csc , 1 d x d 5 6 ® °2, x  1 or x ! 5 ¯

has possible discontinuities at x

1, x

5.

S

f 5

csc

1.

f 1

2.

lim f x

3.

f 1

csc

6

2

lim f x

2

x o1

lim f x

f 5

x o1

1 and x

2

2

x o5

f is continuous at x 57. f x

5S 6

lim f x

x o5

5, therefore, f is continuous for all real x.

csc 2 x has nonremovable discontinuities at

integer multiples of S 2.

63. f 1

3

Find a so that lim ax  4

3

a 1  4

3

a

7.

Find a so that lim ax  5

3

a 1  5

3

x o1

58. f x

Sx

has nonremovable discontinuities at each 2 2k  1, k is an integer.

59. f x

tan

ax  8b has nonremovable discontinuities at

each integer k. 60. f x

64. f 1

3 x o1

5  a xb has nonremovable discontinuities at

a

each integer k. 61. lim f x

0

lim f x

0

x o 0 x o 0

65. f 2

8

Find a so that lim ax 2 x o 2

f is not continuous at x

2.

66. lim g x x o 0

50

lim g x

x o 0 −8

Let a

8

2.

8 Ÿ a

8 22

2.

4 sin x 4 x a lim a  2 x

lim

x o 0

x o 0

4.

− 10

62. lim f x

0

lim f x

0

x o 0 x o 0

f is not continuous at x

4.

20

−8

8

−10

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

78

NOT FOR SALE

Chapter 1

Limits its and Their Properties

67. Find a and b such that lim ax  b

a  b

x o 1

a  b

 3a

x o 3

 b

f x

1

a

2  1

b

x2  a2 xoa x  a lim x  a

1

xoa

8 Ÿ a

Find a such 2a

x

 1

­°x 2  3 x, x ! 4 ® °¯2 x  5, x d 4

75. g x

lim

69. f g x

2.

x d 1 ­ 2, ° x 1, 1 x  3    ® °2, x t 3 ¯

2 4

xoa

3a  b

2

4a

68. lim g x

2 and lim ax  b

2a

There is a nonremovable discontinuity at x

4.

4.

10

2

Continuous for all real x.

−2

8 −2

1 x 1

70. f g x

Nonremovable discontinuity at x all x ! 1. 1  x 5  6

71. f g x

2

1. Continuous for

72. f g x

sin x

f 0

1 x 1 2

Nonremovable discontinuities at x

axb 

­ cos x  1 , x  0 ° x ® °5 x, x t 0 ¯

5 0

lim f x

r1

cos x

x o 0

lim f x

 1

x

lim 5 x

x o 0

2

0 lim

x o 0

0

0

x o 0

Therefore, lim f x

0

xo0

Continuous for all real x 73. y

76. f x

f 0 and f is continuous on

the entire real line. x 0 was the only possible discontinuity.

x

3

Nonremovable discontinuity at each integer 0.5 −7

−3

2

3

−3

− 1.5

74. h x

77. f x

1

x

Continuous on f, f

 1 x  2

Nonremovable discontinuities at x 2

x x2  x  2

1 and x

2.

78. f x

x

x 3

Continuous on >3, f −3

4

79. f x −2

sec

Sx 4

Continuous on:

!, 6,  2 , 2, 2 , 2, 6 , 6, 10 , ! 80. f x

x 1 x

INSTRUCTOR USE ONLY Continuous on 0, f

© 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE Section 1.4

81. f x

87. f x

sin x x

f 0 −4

x3  x  1

1 and f 1

1

By the Intermediate Value Theorem, f c

4

−2

The graph appears to be continuous on the interval >4, 4@. Because f 0 is not defined, you know that f has a discontinuity at x 0. This discontinuity is removable so it does not show up on the graph. x3  8 x  2

least one value of c between 0 and 1. Using a graphing utility to zoom in on the graph of f x , you find that

x | 0.68. Using the root feature, you find that x | 0.6823. 88. f x

x3  5 x  3

f 0

3 and f 1

3

By the Intermediate Value Theorem, f c

−4

4

The graph appears to be continuous on the interval >4, 4@. Because f 2 is not defined, you know that f has a discontinuity at x 2. This discontinuity is removable so it does not show up on the graph.

>1, 2@. f 1

 x3  4 is continuous on the interval 37 12

and f 2

 83 . By the Intermediate

Value Theorem, there exists a number c in >1, 2@ such that f c 84. f x

f 0

0.

x  5 x  3 is continuous on the interval >0, 1@. 3

3 and f 1

3. By the Intermediate Value

Theorem, there exists a number c in >0, 1@ such that

f c 85. f x

f 0

0. x 2  2  cos x is continuous on >0, S @.

3 and f S

S 2  1 | 8.87 ! 0. By the

Intermediate Value Theorem, f c

0 for at least one

value of c between 0 and S . 86. f x

f 1 f 4



0 for at

least one value of c between 0 and 1. Using a graphing utility to zoom in on the graph of f x , you find that

0

1 x4 12

0 for at

f x is continuous on >0, 1@.

14

83. f x

79

f x is continuous on >0, 1@.

3

82. f x

Continuity and OneOne One-Sided Limits

5 §S x ·  tan ¨ ¸ is continuous on the interval >1, 4@. x © 10 ¹

x | 0.56. Using the root feature, you find that x | 0.5641. 89. g t

2 cos t  3t

g is continuous on >0, 1@. g 0

2 ! 0 and g 1 | 1.9  0.

By the Intermediate Value Theorem, g c

0 for at

least one value of c between 0 and 1. Using a graphing utility to zoom in on the graph of g t , you find that

t | 0.56. Using the root feature, you find that t | 0.5636. 90. h T

1  T  3 tan T

h is continuous on >0, 1@. h 0

1 ! 0 and h 1 | 2.67  0.

By the Intermediate Value Theorem, h c

0 for at

least one value of c between 0 and 1. Using a graphing utility to zoom in on the graph of h T , you find that

T | 0.45. Using the root feature, you find that T | 0.4503.

§S · 5  tan ¨ ¸ | 4.7 and © 10 ¹ 5 § 2S ·   tan ¨ ¸ | 1.8. By the Intermediate 4 © 5 ¹

Value Theorem, there exists a number c in >1, 4@ such that f c

0.

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

80

NOT FOR SALE

Chapter 1

91. f x

Limits its and Their Properties

x2  x  1

f is continuous on >0, 5@. f 0

1 and f 5

ª5 º f is continuous on « , 4». The nonremovable ¬2 ¼ discontinuity, x 1, lies outside the interval.

29

1  11  29 The Intermediate Value Theorem applies. x  x  12

0

 4 x  3

0

35 §5· and f 4 f¨ ¸ 6 © 2¹ 35 20  6  6 3

4 or x

3

The Intermediate Value Theorem applies.

x  x 1 2

2

x

x 3 x

c

So, f 3 92. f x

11

4 is not in the interval.

x2  x x 1

11.

x2  x

x2  6x  8

f 0

8 and f 3

1

The Intermediate Value Theorem applies. x2  6x  8

0

 2 x  4

0

x

2 or x

2 x

c

4

4 is not in the interval.

So, f 2

0.

3

2 is not in the interval.

So, f 3

6.

95. (a) The limit does not exist at x c. (b) The function is not defined at x c. c, but it is not equal to the (c) The limit exists at x value of the function at x c. (d) The limit does not exist at x c. 96. Answers will vary. Sample answer:

x3  x 2  x  2

5 4 3 2 1

2 and f 3

19

−2 −1

2  4  19 The Intermediate Value Theorem applies.

x2

2 or x

3 x

f is continuous on >0, 3@.

x

0

y

93. f x

f 0

 2 x  3

c

1  0  8

6x  6 0

x

20 3

6

x2  5x  6

x

f is continuous on >0, 3@.

x

x2  x x 1

94. f x

x3  x 2  x  2

4

x3  x 2  x  6

0

 2 x  x  3

0

x

2

2

 x  3 has no real solution. c

So, f 2

4.

2

x 1

3 4 5 6 7

−2 −3

The function is not continuous at x lim f x 1 z 0 lim f x . x o 3

3 because

x o 3

97. If f and g are continuous for all real x, then so is f  g (Theorem 1.11, part 2). However, f g might not be

continuous if g x g x

0. For example, let f x

x and

x  1. Then f and g are continuous for all real 2

x, but f g is not continuous at x

r1.

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE Section 1.4

98. A discontinuity at c is removable if the function f can be made continuous at c by appropriately defining (or redefining) f c . Otherwise, the discontinuity is

nonremovable. x  4 x  4

(c) f x

x

3  a xb

g x

3   x

3  a xb

f x

3  x½° ¾ for x an integer °¿

3 x

3  a xb

f

12

3 0

4  x  4 4

x

4 is removable

4 is nonremovable, x

3, g

12

3  1

4.

­0.40, 0  t d 10 ° ®0.40  0.05at  9b, t ! 10, t not an integer °0.40  0.05 t  10 , t ! 10, t an integer ¯

105. C t

x  4

2  a xb.

g x  1

For example,

x t 4

­1, ° °0, ® °1, °0, ¯

104. The functions agree for integer values of x:

f x

sin x  4

(b) f x

81

However, for non-integer values of x, the functions differ by 1.

x  4

(a) f x

Continuity and OneOne One-Sided Limits

C

y

0.7

4

0.6

3

0.5

2

0.4 0.3

1

0.2 x −6 −4 −2

−1

2

4

0.1

6

t 2

−2

99. True

f c

1. 2.

lim f x

3.

f c

0  t d 10 °­0.40, ® 0.40  0.05 10  t , t a b ! 10 °¯

C t

lim f x

xoc

All of the conditions for continuity are met.

lim f x

xoc

8 10 12 14

Note: You could also express C as

L exists.

100. True. If f x

6

There is a nonremovable discontinuity at each integer greater than or equal to 10.

L is defined.

xoc

4

g x , x z c, then

lim g x (if they exist) and at least one of

xoc

these limits then does not equal the corresponding function value at x c.

and n, respectively. It can have, at most, n discontinuities. 102. False. f 1 is not defined and lim f x does not exist. x o1

103. lim f t | 28

t

0

1

1.8

2

3

3.8

N t

50

25

5

50

25

5

Discontinuous at every positive even integer. The company replenishes its inventory every two months. N 50

Number of units

101. False. A rational function can be written as P x Q x where P and Q are polynomials of degree m

§ c t  2 fg · 25¨ 2dd g  t¸ 2 e h © ¹

106. N t

40 30 20 10

t

t o 4

2

4

6

8

10 12

Time (in months)

lim f t | 56

t o 4

At the end of day 3, the amount of chlorine in the pool has decreased to about 28 oz. At the beginning of day 4, more chlorine was added, and the amount is now about 56 oz.

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

82

Chapter 1

NOT FOR SALE

Limits its and Their Properties

107. Let s t be the position function for the run up to the

campsite. s 0 s 20

0 t

0 corresponds to 8:00 A.M.,

112. sgn x

k (distance to campsite)). Let r t be the

position function for the run back down the mountain: r 0 k , r 10 0. Let f t s t  r t . When t 0 (8:00 A.M.), f 0 s 0  r 0 0  k  0. 10 (8:00 A.M.), f 10

When t

­1, if x  0 ° 0 ®0, if x °1, if x ! 0 ¯

(a)

lim sgn x

1

x o 0

(b) lim sgn x

1

x o 0

s 10  r 10 ! 0.

(c) limsgn x does not exist. xo0

y

Because f 0  0 and f 10 ! 0, then there must be a

4

value t in the interval >0, 10@ such that f t

2

f t

0, then s t  r t

s t

r t . Therefore, at some time t, where

3

0. If

1

0, which gives us

4 3 S r be the volume of a sphere with radius r. 3 500S V is continuous on >5, 8@. V 5 | 523.6 and 3 2048S V 8 | 2144.7. Because 3 523.6  1500  2144.7, the Intermediate Value Theorem guarantees that there is at least one value r between 5 and 8 such that V r 1500. (In fact,

3

4

−4

113. (a)

S 60 50 40 30 20 10 t 5

10

15 20

25 30

(b) There appears to be a limiting speed and a possible cause is air resistance. 114. (a) f x

f x1 ! 0 and there exists x2 in >a, b@ such that f x2  0. Then by the Intermediate Value Theorem,

2

−3

r | 7.1012.) 109. Suppose there exists x1 in >a, b@ such that

1

−2

0 d t d 10, the position functions for the run up and the run down are equal. 108. Let V

x

−4 −3 −2 −1

­0, 0 d x  b ® ¯b, b  x d 2b

y

2b

f x must equal zero for some value of x in

> x1, x2 @ or > x2 , x1@ if x2  x1 . So, f would have a zero in >a, b@, which is a contradiction. Therefore, f x ! 0 for all x in >a, b@ or f x  0 for all x in >a, b@. 110. Let c be any real number. Then lim f x does not exist

b

x b

NOT continuous at x

xoc

because there are both rational and irrational numbers arbitrarily close to c. Therefore, f is not continuous at c. 111. If x

0, then f 0

continuous at x

0 and lim f x xo0

If x z 0, then lim f t lim f t

tox

tox

lim kt

tox

(b) g x

0. So, f is

0.

2b

b.

­x 0 d x d b °° 2 , ® °b  x , b  x d 2b °¯ 2

y

2b

0 for x rational, whereas

kx z 0 for x irrational. So, f is not

b

continuous for all x z 0.

x b

2b

Continuous on >0, 2b@.

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE Section 1.4

2 °­1  x , x d c ® x, x ! c °¯

115. f x

116. Let y be a real number. If y 0, then x y ! 0, then let 0  x0  S 2 such that

f is continuous for x  c and for x ! c. At x 1 r

c

1 4

1 r 2

2

5

83

0. If

tan x0 ! y this is possible since the tangent

M

c, you

function increases without bound on >0, S 2 . By the

c. Solving c 2  c  1, you obtain

need 1  c 2

Continuity and OneOne One-Sided Limits

Intermediate Value Theorem, f x

.

tan x is

continuous on >0, x0 @ and 0  y  M , which implies that there exists x between 0 and x0 such that tan x y. The argument is similar if y  0.

x  c2  c ,c ! 0 x

117. f x

Domain: x  c 2 t 0 Ÿ x t c 2 and x z 0, ª¬c 2 , 0 ‰ 0, f x  c2  c x

lim

x o0

Define f 0

x  c2  c x c c 2

1 2c to make f continuous at x

lim f x

xoc

f c exists.

'x o 0

Therefore, f is continuous at x

x ª x  c  cº ¬ ¼

1 2c

x c c 2

If y t 0 and y d 1, then y y  1 d 0 d x 2 , as desired. So assume y ! 1. There are now two cases.

y y  1

c.

y y  1  2 y d x  1  2 y 2

xa xb

119. h x

1

lim

xo0

2

Case l: If x d y  12 , then 2 x  1 d 2 y and

f c .

xoc

x o0

x  c2  c2

0.

c  'x. As x o c, 'x o 0]

lim f x

lim

121. The statement is true.

lim f c  'x

[Let x 3.

x o0

x  c2  c ˜ x

f c is defined.

118. 1. 2.

lim

x2  2x  1  2 y d x2  2 y  2 y

15

x2 −3

Case 2: If x t y 

3



−3

x2 t y 

h has nonremovable discontinuities at x

f 2 x  f1 x . Because f1 and

f 2 are continuous on >a, b@, so is f. f a

f 2 a  f1 a ! 0 and

f b

f 2 b  f1 b  0

f 2 c  f1 c

(b) Let f1 x

x and f 2 x

>0, S 2@, f1 0

0 Ÿ f1 c

f 2 c

cos x, continuous on

 f 2 0 and f1 S 2 ! f 2 S 2 .

So by part (a), there exists c in >0, S 2@ such that c

2

1 4

! y2  y y y  1

In both cases, y y  1 d x 2 .

By the Intermediate Value Theorem, there exists c in >a, b@ such that f c 0. f c



y2  y 

r1, r 2, r 3, !.

120. (a) Define f x

1 2

1 2

122. P 1

P 02  1

P 0  1

1

P 2

P 12  1

P 1  1

2

P 5

P 22  1

P 2  1

2

2

2

5

Continuing this pattern, you see that P x

x for

infinitely many values of x. So, the finite degree polynomial must be constant: P x x for all x.

cos c .

INSTRUCTOR USE ONLY Using a graphing utility, c | 0.739.

© 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

84

NOT FOR SALE

Chapter 1

Limits its and Their Properties

Section 1.5 Infinite Limits 1. f x

1 x  4

4. f x

As x approaches 4 from the left, x  4 is a small negative number. So, lim f x

2. f x

lim f x

5.

6.

f.

As x approaches 4 from the right, x  4 is a small positive number. So, lim f x

f.

x o 4

3. f x

7.

1

x

 4

As x approaches 4 from the left or right, x  4 is a 2

small positive number. So, lim f x

lim f x

x o 4

9. f x

x x2  4

f

lim 2

x x2  4

f

1 x  2 1 lim x o 2 x  2 lim

x o 2

lim tan

x o 4

f

Sx

f

4 Sx lim tan 4 x o 2 lim sec

Sx

x o 2

4 Sx lim sec 4 x o 2

f.

f

x o 2

2

8.

x o 4

lim 2

x o 2

x o 2

As x approaches 4 from the left, x  4 is a small negative number. So, lim f x

lim f x

x o 4

1 x  4

x o 4

2

small positive number. So,

f

x o 4

 4

2

As x approaches 4 from the right, x  4 is a small positive number. So, lim f x

x

As x approaches 4 from the left or right, x  4 is a

f

x o 4

1

f

f f

f.

1 x 9 2

x f x

–3.5

–3.1

–3.01

–3.001

2.999

–2.99

–2.9

–2.5

0.308

1.639

16.64

166.6

166.7

16.69

1.695

0.364

lim f x

f

lim f x

f

x o 3 x o 3

2

−6

6

−2

10. f x

x x2  9

x f x

–3.5

–3.1

–3.01

–3.001

2.999

–2.99

–2.9

–2.5

1.077

5.082

50.08

500.1

499.9

49.92

4.915

0.9091

lim f x

f

lim f x

f

x o 3 x o 3

2

−6

6

INSTRUCTOR USE ONLY −2 −2

© 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE Section 1.5

IIn Infinite Limits

85

x2 x 9

11. f x

2

x f x

–3.5

–3.1

–3.01

–3.001

2.999

–2.99

–2.9

–2.5

3.769

15.75

150.8

1501

1499

149.3

14.25

2.273

lim f x

f

lim f x

f

x o 3 x o 3

4

−6

6

−4

12. f x

sec

x f x

Sx 6

–3.5

–3.1

–3.01

–3.001

2.999

–2.99

–2.9

–2.5

3.864

19.11

191.0

1910

1910

191.0

19.11

3.864

lim f x

f

lim f x

f

x o 3 x o 3

4

−6

6

−4

13. lim

x o 0

1 x2

f

Therefore, x 14. lim

x o 2

lim

x o 2

3

f

3

f

 2 4

x

 2

Therefore, x 2

15.

lim

x o 2

x x2  4

Therefore, x

1 x2

18.

0 is a vertical asymptote.

4

x

lim

x o 0

lim h s

s o 5

Therefore, s lim h s

s o 5

Therefore, s 19. lim

x o 2

2 is a vertical asymptote. f and lim

x o 2

2

x x2  4

f

2 is a vertical asymptote.

x2 lim 2 x o 2 x  4

x2 f and lim 2 x o 2 x  4

Therefore, x

2 is a vertical asymptote.

f

16. No vertical asymptote because the denominator is never zero.

f and lim h s s o 5

5 is a vertical asymptote. f and lim h s s o 5

x2  2 x o 2 x  2 x  1 lim

lim

x o 1

f f

2 is a vertical asymptote.

x2  2 x  2 x  1

x2  2 x o 1 x  2 x  1 lim

Therefore, x

f.

5 is a vertical asymptote.

x2  2 x  2 x  1

Therefore, x

f.

f f

1 is a vertical asymptote.

17. No vertical asymptote because the denominator is never zero.

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

86

NOT FOR SALE

Chapter 1 Limitss and Their Properties Prope

20. lim

x o 0

2 x x 1  x

lim

2

Therefore, x

x o 0

f

2  x 2 x o1 x 1  x

f

lim

Therefore, x

f

Therefore, t

28. h t

2 1 x x  2 x  8 6 x2  2x  8

 x2  4x 2 3 x  6 x  24

1 x, 6

2

3  2 x  1

x

2 and x

Vertical asymptotes at x

1.

x x3  2 x 2  9 x  18

25. f x

3. The graph has

 1 x  x  1 2

x 1

lim x 2  x  1

lim f x

x o 1

x2  4 x  2x2  x  2 3

1.

t

tan T

2n

 1 S

S

2

2

lim

T o0

tan T

lim x  1

x o 1

0 because

2

2

−3

x  2 x  2 x  2 x 2  1

 nS , n any interger.

1.

T

x2  1 x o 1 x  1

1.

sin T has vertical asymptotes at T cos T

T

There is no vertical asymptote at T

3.

x o 1

The graph has a hole at x 26. h x

t

33. lim

has no vertical asymptote because

nS , n a

nonzero integer. There is no vertical asymptote at t 0 since

T

Vertical asymptotes at x 0 and x holes at x 3 and x 2.

x

t has vertical asymptotes at t sin t

32. g T

4 , x z 3, 2 x x  3

1 has vertical asymptotes at cos S x

2n  1 , n any integer. 2

x

lim

4 x  3 x  2

2. The graph has a hole at

sin S x has vertical asymptotes at cos S x

sec S x

t o 0 sin

x x  2 x 2  9

x 1 x 1

t ,t z 2  2 t 2  4

tan S x

31. s t

4 x 2  x  6

3

t

30. f x

No vertical asymptote. The graph has holes at x and x 4.

24. f x

 2 t  2 t 2  4

2n  1 , n any integer. 2

x

x z 2, 4

 x2  x  2

t

29. f x

0 is a vertical asymptote.

5.

t t  2

Vertical asymptote at t t 2.

4· § lim ¨1  2 ¸ t ¹ t o 0 ©

1 2 x3

x 3 ,x z 5 x2  1

No vertical asymptote. The graph has a hole at x

1 is a vertical asymptote.

4· § 21. lim ¨1  2 ¸ t ¹ t o 0 ©

23. f x

x  5 x  3 x  5 x 2  1

27. f x

f

0 is a vertical asymptote.

2 x lim 2 x o1 x 1  x

22. g x

2 x x 1  x 2

3

−5

Removable discontinuity at x

1

has no vertical asymptote because x  2 1

4  . 5

The graph has a hole at x

2.

lim h x

x o 2

lim

x o 2 x 2

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE Section 1.5

34. lim

x o 1

x2  6 x  7 x 1

lim x  7

8

x o 1

43.

lim

x o 3

x 3 x  x  6

IIn Infinite Limits

lim

x 3 x  3 x  2

lim

1 x  2

x o 3

2

2 −3

3

x o 3

44. −12

Removable discontinuity at x 35.

x2  1 x o 1 x  1

f

lim

lim

x o 1

6x2  x  1 2 x o 1 2  4 x  4 x  3 lim

x o1

x2  1 x 1

f

Vertical asymptote at x

1

3x  1 2 x  1 2 x  3 2 x  1

lim

3x  1 2x  3

x o 1 2 

45. lim

x 1  1 x  1

x2

46. lim

x o3

x  2 x2

1 5

lim

x o 1 2 

1



87

lim

x o1 x 2

1 1

5 8

1 2

1 9

8

−3

3

sin x  1

x o 0 sin

Removable discontinuity at x

50.

1

51. lim

x oS

f

x

f



x csc x

lim

x oS



x sin x



0

3

52. lim

lim

x o 1

38. lim

x o1

39. lim

x o 2

1 x 1  1

x

f

lim x sec S x

f and

x o 1 2 

0

lim x sec S x

x o 1 2 

2

x2 42. lim 2 x o 4 x  16

lim x 2 tan S x

f and

lim x 2 tan S x

f. Therefore,

x o 1 2  x o 1 2 

f

2

 1

lim ª x  2 tan xº¼

x o 0¬

f.

x o 1 2

54.

x x  2

x

cot x

f

2

2 x x o1 1  x

x o1

 2

Therefore, lim x sec S x does not exist.

40. lim

41. lim

53.

f

1

x

x

xo0

−2

37.

f

2 x o S 2 cos x lim

2

−3

2

49. lim

1

x 1

x o 1

f

1· § 48. lim ¨ x 2  ¸ x¹ x o 0 ©

−8

36. lim

1· § 47. lim ¨1  ¸ x¹ x o 0 ©

f

lim x 2 tan S x does not exist.

x o 1 2

55. f x

x2  x  1 x3  1

lim f x

1 2

lim

x o1

x o1

x2  x  1 x  1 x 2  x  1

1 x 1

f

3

−4

5

INSTRUCTOR USE ONLY 3 −3

© 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

88

NOT FOR SALE

Chapter 1 Limitss and Their Properties Prope

x  1 x 2  x  1 x3  1 x2  x  1 x2  x  1 lim f x lim x  1 0

56. f x x o1

x o1

64. No, it is not true. Consider p x

−8

m0

65. m

8

−4

1  v 2 c 2

lim m

1 x 2  25 lim f x f

57. f x x o 5

k

lim

k f

V o 0 V −8

− 0.3

x o 4

Sx 8 f

50S sec 2

(b) r

50S sec2

f

lim

x o 25

2x

69. (a) Average speed

50 50 50 y  50 x

61. One answer is

62. No. For example, f x

asymptote.

x 3 . x 2  4 x  12

f Total distance Total time 2d d x  d y 2 xy y  x 2 xy

50 x

2 xy  50 y

50 x

2 y x  25

25 x x  25

1 has no vertical x2  1

3 ft sec 2

625  x 2

60. The line x c is a vertical asymptote if the graph of f approaches r f as x approaches c.

x 3 x  6 x  2

7 ft sec 12

625  225

says how the limit fails to exist.

f x

f

2 15

−6

lim f x

200S ft sec

3

2 7

(b) r

bound as x approaches c is called an infinite limit. f is not a number. Rather, the symbol

S

625  49

9

(c)

200S ft sec 3

6

lim ª¬50S sec 2 T º¼

68. (a) r

59. A limit in which f x increases or decreases without

S

T o S 2 

6

xoc

f

67. (a) r

(c)

−9

f

(In this case you know that k ! 0. )

8

lim f x

1  v 2 c 2

v o c

k V

66. P

0.3

m0

lim

v o c

sec

x 1

has a hole at 1, 2 , not a vertical asymptote.

4

58. f x

p x

x2  1 x 1

f x

x 2  1. The function

y

Domain: x ! 25 (b)

x

30

40

50

60

y

150

66.667

50

42.857

y

63. 3 2

(c)

1 x

lim

x o 25

25 x x  25

f

INSTRUCTOR ST USE ONLY −2

−1

1

−1

3

As x gets close to 25 mi/h, m y becomes larger and larger.

−2

© 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE Section 1.5

70. (a)

x

1

0.5

0.2

0.1

0.01

0.001

0.0001

f (x)

0.1585

0.0411

0.0067

0.0017

 0

 0

 0

In Infinite Limits

89

0.5

− 1.5

1.5

− 0.25

(b)

x o 0

lim

x  sin x x

x

1

0.5

0.2

0.1

0.01

0.001

0.0001

f (x)

0.1585

0.0823

0.0333

0.0167

0.0017

 0

 0

0

0.25

− 1.5

1.5

− 0.25

(c)

x o 0

lim

x  sin x x2

x

1

0.5

0.2

0.1

0.01

0.001

0.0001

f (x)

0.1585

0.1646

0.1663

0.1666

0.1667

0.1667

0.1667

0

0.25

− 1.5

1.5

− 0.25

(d)

x o 0

lim

x  sin x x3

x

1

0.5

0.2

0.1

0.01

0.001

0.0001

f (x)

0.1585

0.3292

0.8317

1.6658

16.67

166.7

1667.0

0.1667 1 6

1.5

− 1.5

1.5

−1.5

lim

x o 0

x  sin x x4

For n ! 3, lim

x o 0

f x  sin x xn

f.

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

90

NOT FOR SALE

Chapter 1 Limitss and Their Properties Prope 1 1 bh  r 2T 2 2

71. (a) A

1 1 2 10 10 tan T  10 T 2 2

50 tan T  50 T

§ S· Domain: ¨ 0, ¸ © 2¹ (b)

T

0.3

0.6

0.9

1.2

1.5

f T

0.47

4.21

18.0

68.6

630.1

100

0

1.5 0

(c)

f

lim A

T o S 2

72. (a) Because the circumference of the motor is half that of the saw arbor, the saw makes 1700 2

850 revolutions per minute.

(b) The direction of rotation is reversed. § §S ·· (c) 2 20 cot I  2 10 cot I : straight sections. The angle subtended in each circle is 2S  ¨ 2¨  I ¸ ¸ 2 ¹¹ © ©

So, the length of the belt around the pulleys is 20 S  2I  10 S  2I

S  2I .

30 S  2I .

60 cot I  30 S  2I

Total length

§ S· Domain: ¨ 0, ¸ © 2¹ (d)

(e)

I

0.3

0.6

0.9

1.2

1.5

L

306.2

217.9

195.9

189.6

188.5

450

␲ 2

0 0

(f)

60S | 188.5

lim L

I o S 2 

(All the belts are around pulleys.) (g) lim L I o 0

f

73. False. For instance, let f x

x 1 or x 1

g x

x . x2  1

76. False. Let

2

f x

The graph of f has a vertical asymptote at x f 0

74. True 75. False. The graphs of y tan x, y cot x, y

­1 ° , x z 0 ®x °3, x 0. ¯

sec x and y

0, but

3.

csc x have

INSTRUCTOR USE ONLY vertical asymptotes.

© 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

Section 1.5 1 and g x x2

77. Let f x 1 lim x o 0 x2

1 , and c x4

1 f and lim 4 xo0 x

78. Given lim f x

f z 0.

L:

xoc

L 2 ! 0 there exists

G1 ! 0 such that g x  L  L 2 whenever 0  x  c  G1. So, L 2  g x  3L 2. Because lim f x

xoc

f then for M ! 0, there exists

G 2 ! 0 such that f x ! M 2 L whenever x  c  G 2 . Let G be the smaller of G1 and

G 2 . Then for 0  x  c  G , you have f x g x ! M 2 L L 2 lim f x g x

M . Therefore

f. The proof is similar for L  0.

xoc

g x

f x

1 f x

Then, lim

1 f x

x oc

(3) Quotient: Let H ! 0 be given. There exists G1 ! 0 such that f x ! 3L 2H whenever 0  x  c  G1 and

f, let g x

91

1. Then

0 by Theorem 1.15.

80. Given lim

xoc

(2) Product: If L ! 0, then for H

xoc

lim

f and lim g x

xoc

79. Given lim f x xoc

f, but

§ x2  1· lim ¨ ¸ 4 xo0 © x ¹

1· §1 lim ¨  4¸ x o 0© x 2 x ¹

0.

In Infinite Limits

0. Suppose lim f x exists and equals L. xoc

lim 1

xoc

lim f x

xoc

1 L

0.

This is not possible. So, lim f x does not exist. xoc

1 is defined for all x ! 3. Let M ! 0 be x 3 given. You need G ! 0 such that 1 f x ! M whenever 3  x  3  G . x 3

81. f x

Equivalently, x  3 

1 whenever M

x  3  G , x ! 3. 1 . Then for x ! 3 and M 1 1 x  3  G, ! M and so f x ! M . 8 x 3

So take G

there exists G 2 ! 0 such that g x  L  L 2 whenever 0  x  c  G 2 . This

inequality gives us L 2  g x  3L 2. Let G be the smaller of G1 and G 2 . Then for 0  x  c  G , you have g x

f x



3L 2 3L 2H

Therefore, lim

xoc

H.

g x

f x

0.

1 1 is defined for all x  5. Let N  0 be given. You need G ! 0 such that f x  N whenever x 5 x 5 1 1 1 5  G  x  5. Equivalently, x  5 ! whenever x  5  G , x  5. Equivalently,   whenever N x 5 N

82. f x

1 . Note that G ! 0 because N  0. For x  5  G and N 1 1  N , and   N. x 5 x 5

x  5  G , x  5. So take G x  5,

1 1 ! x 5 G



INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE

Chapter 1 Limitss and Their Properties Prope

92

Review Exercises for Chapter 1 1. Calculus required. Using a graphing utility, you can estimate the length to be 8.3. Or, the length is slightly longer than the distance between the two points, approximately 8.25. 11

−9

9 −1

9

2. Precalculus. L

3. f x

 1  3  1 2

2

| 8.25

4  2 x  2 x

x

–0.1

–0.01

–0.001

0.001

0.01

0.1

f (x)

–1.0526

–1.0050

–1.0005

–0.9995

–0.9950

–0.9524

lim f x | 1.0

xo0

1 −3

3

−5

4.

x

–0.1

–0.01

–0.001

0.001

0.01

0.1

f (x)

1.432

1.416

1.414

1.414

1.413

1.397

lim f x | 1.414

xo0

3

−3

3

−3

5. lim x  4 x o1

1 4

5

Let H ! 0 be given. Choose G

H . Then for 0  x  1  G

H , you have

x 1  H

x

 4  5  H f x  L  H .

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

Review Exercises for f Chapter 1

x

6. lim

x o9

9

93

3

Let H ! 0 be given. You need x 3  H Ÿ

x 3  H

x  3

x  3 Ÿ x 9  H

Assuming 4  x  16, you can choose G So, for 0  x  9  G x  9  5H 

x  3.

5H .

5H , you have

x 3H

x 3  H f x  L  H .



7. lim 1  x 2 xo2



1  22

3

Let H ! 0 be given. You need 1  x 2  3  H Ÿ x 2  4

x  2 x  2  H Ÿ x  2 

Assuming 1  x  3, you can choose G

H

So, for 0  x  2  G x  2 

H 5

5

H 5

1 H x  2

.

, you have

H



x  2

x  2 x  2  H x2  4  H 4  x2  H

1  x 2  3

 H

f x  L  H . 9. Let H ! 0 be given. G can be any positive

8. lim 9 x o5

number. So, for 0  x  5  G , you have

11. lim x  2

12. lim 10  x

99  H

6

2

xo6

10

4

xo7

f x  L  H . 4x  x2 x

(a) lim h x xo0

(b) lim h x x o 1

10. g x

x 4  x x

40

4  x, x z 0

4 2

14. lim 3 y  1

34 1

yo4

4

4  1

5

15. lim

t  2  4

t o 2 t 2

t2  9 t o3 t  3

2 x x 3

16. lim

lim

t o 2 t

2

 7

13. lim t  2 t o4

9. h x

 2

1  2

lim t  3 t o3

16 4

34

6

81

2.45

9



1 4

6

(a) lim g x does not exist x o3

(b) lim g x xo0

2 0 0 3

0

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

94

NOT FOR SALE

Chapter 1 Limitss and Their Properties Prope x 3 1 x  4

17. lim

xo4

x 3 1 ˜ x  4

lim

xo4

x

lim

xo4

1 x 3 1

lim

4 x  2 ˜ x

lim

1 4 x  2

4 x  2 x

xo0

xo0

xo0

20. lim

1





ª1 lim « s o 0« ¬

1 s 1

s o0

s

x3  125 x o 5 x  5

21. lim

lim





1 s 1

1 1

˜

s



x

lim

x o 2 x 2

23. lim

xo0

24.

lim

25. lim

'x o 0

x

1

x

x  2  2x  4



4 12

'x



1 3

1 0

0

S

lim

sin S 6 cos 'x  cos S 6 sin 'x  1 2

'x o 0

lim

'x o 0



1  s  1º ¼

1 2

 2 x 2  2 x  4

sin ª¬ S 6  'xº¼  1 2 'x

cos S  'x  1



 2 x  2

1

'x o 0 2

26. lim

1  s ª¬ 1

1

75

xo0

4 S 4

4x

x o S 4 tan

s o0

x 5

§ x ·§ 1  cos x · lim ¨ ¸¨ ¸ x ¹ © sin x ¹©

1  cos x sin x



1  s  1º » 1  s  1» ¼ lim



lim x  5 x  25

x o 2

1

 5 x 2  5 x  25

x

x o 5

lim

1 1

4 x  2 4 x  2 1 4

x o 5

x2  4 x o 2 x 3  8

1  x  1 x x  1

1 2

2

22. lim

xo0

xo0 x

ª1 1  s º¼  1 lim ¬ s ª 1 1  s  1º ¬ ¼

s o0

lim

lim

x 3 1

lim

xo4

18. lim

 3  1



x  4

ª1 x  1 º¼  1 19. lim ¬ x o0 x

x 3 1 x 3 1

lim

'x o 0

˜

cos 'x 'x

 1

'x  lim

'x o 0

3 sin 'x ˜ 2 'x

0

3 1 2

3 2

cos S cos 'x  sin S sin 'x  1 'x

ª cos 'x  1 º sin 'x º ª lim « sin S »  'lim « x o 0 'x 'x »¼ ¬ ¬ ¼

'x o 0

0  0 1 27. lim ª¬ f x ˜ g x º¼ xoc

f x x o c g x

28. lim

lim f x x oc

lim g x

 34 23 3 4 23

29. lim ª¬ f x  2 g x º¼ xoc

 12



0

9 8

30. lim ª¬ f x º¼ x oc

2

23

 34  2

ªlim f x º «¬x o c »¼

2

§ 3· ¨ ¸ © 4¹

7 12 2

9 16

INSTRUCTOR USE ONLY x oc

© 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE

Review Exercises for f Chapter 1

2x  1  x 1

31. f x

(a)

3

x

1.1

1.01

1.001

1.0001

f(x)

0.5680

0.5764

0.5773

0.5773

2x  1  x 1

lim

x o1

3

Actual limit is

| 0.577

2

(b)

95

The graph has a hole at x



3 3.

1.

lim f x | 0.5774.

x o1

−1

2 0

2x  1  x 1

(c) lim

x o1

3

2x  1  x 1

lim

x o1

lim

x o1

3

2x  1  2x  1 

˜

2 x  1  3 x  1 2 x  1  2 2x  1 

lim

x o1

2



3

1 3

2 3

3

3 3

3 3

1 3 x x 1

32. f x

(a)

x

1.1

1.01

1.001

1.0001

f(x)

–0.3228

–0.3322

–0.3332

–0.3333

1 3 x | 0.333 x o1 x  1

1· § ¨ Actual limit is  .¸ 3¹ ©

lim

2

(b)

The graph has a hole at x

−3

1.

lim f x | 0.333.

x o1

3

−3

1 3 x (c) lim x o1 x  1

1 3 x 1 lim ˜ x o1 x  1 1 lim

x o1

lim

x o1

3 3

x x  x x 

3

1 x ª x  1 «1  3 x  ¬ 1 1

3

x 

x 3

3

2

2 2

x º»¼ 2

3



1 3

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

96

NOT FOR SALE

Chapter 1 Limitss and Their Properties Prope

33. v

lim

s 4  s t 4t

t o4

2 ª ¬ 4.9 16  250º¼  ª¬4.9t  250º¼ lim t o4 4t

lim

t o4

lim

4.9 t   16

4t 4.9 t  4 t  4 4t

t o4

lim ª4.9 t  4 º¼

39.2 m/sec

t o 4¬

The object is falling at about 39.2 m/sec. 34. 4.9t 2  250

0 Ÿ t

50 sec 7

50 , the velocity is 7

When a

s a  s t t oa a t

ª4.9a 2  250º¼  ª¬4.9t 2  250º¼ lim ¬ t oa a t

lim

lim

4.9 t 2  a 2

a t 4.9 t  a t  a lim t oa a t t oa

lim ª 4.9 t  a º¼ t oa¬ § ¨a ©

4.9 2a

50 · ¸ 7¹

70 m/sec.

The velocity of the object when it hits the ground is about 70 m/sec. 35. lim

x o 3

x 3 x 3

lim

x o 3

 x  3 x3

42. f x

1

36. lim a x  1b does not exist. There is a break in the graph xo4

at x

0

38. lim g x

11

x o1

lim a x  3b

x o k

2

 3 where k is an integer.

k  2 where k is an integer.

Nonremovable discontinuity at each integer k

39. lim h t does not exist because lim h t t o1

t o1

and lim h t

1 2

t o1

40. lim f s 41. f x

Continuous on f, 0 ‰ 0, f

ax  3b lim a x  3b k x o k

37. lim f x

s o 2

2 x

43. f x

4.

xo2

x2 

1  1

2

3 x 2  7

Continuous on f, f

1.

11

2

Continuous on k , k  1 for all integers k 44. f x

3x 2  x  2 x 1

3 x

 2 x  1 x 1

Continuous on f, 1 ‰ 1, f

3x  2 x  1 3x 2  x  2 x 1 x 1 lim f x lim 3x  2 5

45. f x x o1

x o1

Removable discontinuity at x

1

INSTRUCTOR USE ONLY f, 1 ‰ 1, f Continuous on f

© 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE

Review Exercises for f Chapter 1

x 1 2x  2 x 1 1 lim x o 1 2 x  1 2

­5  x, x d 2 ® ¯2 x  3, x ! 2

46. f x

lim 5  x

50. f x

3

x o 2

lim 2 x  3

1

x o 2

Continuous on f, 1 ‰ 1, f

2

Continuous on f, 2 ‰ 2, f

lim

xo2

 2

1

x

51. f x

1

x  2

2

2k , 2k

x 1 x

x o 0

1

1 x

1

52. f x

f

4

§ 2n  1 S 2n  1 S · , ¨ ¸ 4 4 © ¹

0

for all integers n. 53. f 2

3 x 1 lim f x f

49. f x

x o 2

c 2  6

f 1

Nonremovable discontinuity at x Continuous on f, 1 ‰ 1, f 2

lim x  1

4

x o 3

Find b and c so that lim x 2  bx  c x o1

Consequently you get

1 b  c

Solving simultaneously, 55. f is continuous on >1, 2@. f 1

f 2

b

2 and lim x 2  bx  c 2

and 9  3b  c

3 and

1  0 and

c

5.

5

2c

1

c



1 2

4.

x o 3

4. 4. 56. C x

13 ! 0. Therefore by the Intermediate Value

Theorem, there is at least one value c in 1, 2 such that 2c 3  3

5

Find c so that lim cx  6

x o1

x o1

 1 S

Continuous on

Continuous on f, 1@ ‰ 0, f

54. lim x  1

tan 2 x

2n

x

Nonremovable discontinuity at x

x o1

 2

Nonremovable discontinuities when

1 x

Domain: f, 1@, 0, f

lim f x

2

for all integers k.

2

Continuous on f, 2 ‰ 2, f

lim

Sx

Continuous on

Nonremovable discontinuity at x

48. f x

csc

Nonremovable discontinuities at each even integer.

f

2

1

Removable discontinuity at x

Nonremovable discontinuity at x

47. f x

97

12.80  2.50 ¬ªa xb  1¼º,

x ! 0

12.80  2.50 ª¬a xb  1º¼ ,

x ! 0

25

0.

0

5 10

C has a nonremovable discontinuity at each integer 1,, 2, 3,!.

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

98

Chapter 1 Limitss and Their Properties Prope x2  4 x  2

57. f x

(a)

x

lim f x

ª x  2º  2 « » ¬« x  2 »¼

66.

4

x o 2

4

x o 2

(c) lim f x does not exist.

68.

xo2

x

 1 x

(b) lim f x

0

(c) lim f x

0

x o 0

0

Vertical asymptotes at x

sec x x

73. lim

csc 2 x x

x o 0

2

2 and x

 10

2

10

75. C

csc S x

lim

2x  x  1 x  2

lim

x o 1

x 1 x3  1

f

f

80,000 p , 0 d p  100 100  p

f

$80.000

(c) C 90

$720,000

f

lim

x o 1

1 x2  x  1

lim

80,000 p  p

p o100 100

f

1 3

tan 2x x

76. f x

(a)

1 x sin 2 x

(b) C 50

(d)

x 64. lim  x o 1 2 2 x  1 65.

lim

x o 0

(a) C 15 | $14,117.65

2

x o 2

4 5

f

cos 2 x x x o 0

Vertical asymptote at every integer k 63.

ª 4 § sin 4 x ·º lim « ¨ ¸ 4 x ¹»¼

x o 0 ¬ 5 ©

74. lim

Vertical asymptote at x 62. f x

72. lim

1 4

f

x2  4

sin 4 x 5x



f

1

x o 0

8

x

f

71. lim 2 x

1 x  1 x  1 2

x2  2x  1 x 1 x o 1 lim

x o 0

4x 4  x2

61. f x

x o 1

f

70. lim

Vertical asymptote at x 60. h x

lim

x2  2 x  1 x 1 x o1

x o 2 3

x o1

1

x 1 x4  1

1· § 69. lim ¨ x  3 ¸ x ¹ x o 0 ©

(a) Domain: f, 0@ ‰ >1, f

59. g x

x o 1

67. lim

(b) lim f x

58. f x

lim

x

–0.1

–0.01

–0.001

0.001

0.01

0.1

f(x)

2.0271

2.0003

2.0000

2.0000

2.0003

2.0271

lim

xo0

tan 2 x x

2

(b) Yes, define f x

­ tan 2 x , x z 0 ° . ® x °2, 0 x ¯

Now f x is continuous at x

INSTRUCTOR USE ONLY 0.

© 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

Problem Solving ffo for Chapter 1

99

Problem Solving for Chapter 1 x 2  y  1  2

1. (a) Perimeter 'PAO

x2  y2  1

x 2  x 2  1  2

Perimeter 'PBO

x

 1  y 2 

x2  y2  1

x

 1  x 4 

x2  x4  1

2

2

x 2  x 2  1 

x2  x4  1

x

x2  x4  1

2

(b) r x

(c)

 1  x 4  2

x

4

2

1

0.1

0.01

Perimeter 'PAO

33.02

9.08

3.41

2.10

2.01

Perimeter 'PBO

33.77

9.60

3.41

2.00

2.00

r x

0.98

0.95

1

1.05

1.005

lim r x

x o 0

1 01 1 01

2 2

1 bh 2 1 bh 2

1 1 x 2 1 1 y 2

2. (a) Area 'PAO

Area 'PBO

Area 'PBO Area 'PAO

(b) a x

(c)

x2  x4  1

1

x2 2 x 2

x 2 y 2

x2 2

x

x

4

2

1

0.1

0.01

Area 'PAO

2

1

12

1 20

1 200

Area 'PBO

8

2

12

1 200

1 20,000

a x

4

2

1

1 10

1 100

lim a x

x o 0

lim x

x o 0

0

3. (a) There are 6 triangles, each with a central angle of 60q

Area hexagon

ª1 º 6« bh» ¬2 ¼

Sº ª1 6« 1 sin » 3¼ ¬2

S 3. So,

3 3 | 2.598. 2

h = sin 60° 1 60° h = sin θ 1

θ

Area ((Circle))  Area ((Hexagon) g )

S 

3 3 | 0.5435 2

INSTRUCTOR USE ONLY Error

© 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

100

NOT FOR SALE

Chapter 1 Limitss and Their Properties Prope

(b) There are n triangles, each with central angle of T

(c)

n sin 2S n

2S º ª1 n « 1 sin » n¼ ¬2

ª1 º n « bh» ¬2 ¼

An

2

2S n. So,

.

n

6

12

24

48

96

An

2.598

3

3.106

3.133

3.139

(d) As n gets larger and larger, 2S n approaches 0. Letting x which approaches 1 S 4. (a) Slope

(b) Slope

40 30 

4 3

mx (d) lim mx x o3

x,

3 x  3 4 3 25  x  4 4



25  x 2

y  12



y

25  x 2  4

mx

25  x 2  4

25  x  16

x o3

x



 3

25  x 2  4

3  x 3  x x o3 x  3 25  x 2  lim

lim

x o3

 3  x

25  x 2  4

4

x o5

lim

12 

xo5

xo5



169  x 2



3 4

lim

xo5

This is the slope of the tangent line at P.

lim

169  x 2 12  ˜ x 5 12 

144  169  x

lim



6 4  4

x, 

 169  x 2  12 x 5

(d) lim mx



5 . 12

5 x  5 12 5 169 x  Tangent line 12 12

2

lim

sin x S x

S

12 5

x, y

(c) Q

25  x 2  4 ˜ x 3

x o3



(b) Slope of tangent line is

25  x 2  4 x 3 lim

2S n

2n

5. (a) Slope

3 Tangent line: y  4 4

x, y

sin 2S n

S.

y

(c) Let Q

sin 2S n

2S n, An

x x



 5 12 



x 12 

169  x 2



169  x 2

x 2  25

 5 12 

xo5

2

169  x 2

169  x 2

 5

169  x

2



10 12  12

5 12

a  bx  a  bx 

3 3

This is the same slope as part (b). a  bx  x

6.

a  bx  x

3

x Letting a



3

˜

a  bx  3 a  bx 

3



3 simplifies the numerator.

So, lim

xo0

3  bx  x

3

lim

xo0 x

lim

xo0

b 3  3 3 and b 6.

Setting



bx 3  bx  b 3  bx 

3, you obtain b

3



3 6. So,

INSTRUCTOR USE ONLY a

© 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

NOT FOR SALE

Problem Solving ffo for Chapter 1

101

7. (a) 3  x1 3 t 0 x1 3 t 3 x t 27

Domain: x t 27, x z 1 or >27, 1 ‰ 1, f (b)

0.5

− 30

12 −0.1

3  27

13

(c)

lim f x

(d) lim f x

3  x1 3  2 ˜ x 1

lim

x o1

2

x o1

3 x

13

lim

x o1

x



 1

3  x1 3  2

 4

x1 3  1

lim

x

 x

13



 1

1

lim f x

x o 0

lim a 2  2

x o 0

ax tan x



1 12 y

10. 3

tan x § a¨ because lim x 0 o x ©

· 1¸ ¹

2 1 x

−1

Thus, a2  2

0

a  2 a  1

0

a

9. (a) lim f x xo2

lim f x

−2

(a) f

14 a4b

4 0

1, 2

f 3

c1f ed 3 hg

3: g1 , g 4

f 1

a1b

(b) f continuous at 2: g1 x o 2

1

−1

a

a2  a  2

(c)

 2

3  x1 3  2

a2  2

x o 0

lim



3  x1 3  2

1 23

1  1  1 2 x o 0



3  x1 3  2

x1 3  1 x 2 3  x1 3  1

x o1

1 | 0.0714 14

3  x1 3  2

lim

x o1

8. lim f x

2 28

27  1

x o27

3: g1 , g3 , g 4

(b)

1

lim f x

1

lim f x

0

lim f x

f

lim f x

f

x o1 x o1

x o 0 x o 0

(c) f is continuous for all real numbers except x

0, r1, r 12 , r 13 , !

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

Calculus AP Edition 9th Edition Larson Solutions Manual Full Download: http://alibabadownload.com/product/calculus-ap-edition-9th-edition-larson-solutions-manual/ 102

NOT FOR SALE

Chapter 1 Limitss and Their Properties Prope

y

13. (a)

y

11. 4

2

3 2 1

1

x

−4 −3 −2 −1

1

2

3

4

−2

x

−3

a

b

−4

a1b  a1b

f 1

(a)

f 0 f



0  1 3  2

lim f x

1

lim f x

1

lim f x

1

x o1 x o1

x o1 2

(b) (i) lim Pa , b x

1

v2

(b)

48

r

Let v0 r

(c)

lim r

vo0

Let v0

0  x 0  G x 

G1 a . Then for

G1 a , you have

G1 a

ax  G1 f ax  L  H .

As a counterexample, let ­1, x z 0 a 0 and f x . ® 0 ¯2, x

1920  v0 2  2.17 r

1920 2 v  v0 2  2.17

vo0

f x  L  H . Let G

4 3 mi sec.

v 2  v0 2  2.17

a, b.

(d) The area under the graph of U, and above the x-axis, is 1.

192,000 48  v0 2

1920 r

lim r

1

14. Let a z 0 and let H ! 0 be given. There exists G1 ! 0 such that if 0  x  0  G1 then

192,000  v0 2  48 r

192,000 v 2  v0 2  48

v2

(iv) lim Pa , b x

except x

r

Let v0

0

(c) Pa , b is continuous for all positive real numbers

v 2  v0 2  48

vo0

(iii) lim Pa , b x x o b

192,000 r

lim r

0

x o b

1

0, r1, r 2, r 3, !

12. (a)

(ii) lim Pa , b x x o a

(c) f is continuous for all real numbers except x

1

x o a

0

0

1 2

f 2.7 (b)

1  1

Then lim f x xo0

lim f ax

xo0

L, but

1

lim f 0

xo0

lim 2

xo0

2.

1920 2.17  v0 2

| 1.47 mi/sec .

2.17 mi sec

10,600 v 2  v0 2  6.99 10,600 6.99  v0 2 6.99 | 2.64 mi sec.

Because this is smaller than the escape velocity for Earth, the mass is less.

INSTRUCTOR USE ONLY © 2010 Brooks/Cole, Cengage Learning

© Cengage Learning. All Rights Reserved.

This sample only, Download all chapters at: alibabadownload.com