MOLE CONCEPT (ADVANCED SOLUTION)

MOLE CONCEPT FOUNDATION BUILDER (OBJECTIVE) 1. (D) 2. (D) 3. (B) 4. (A) (Most stable isotope of carbon) 5. (D) ...

0 downloads 94 Views 221KB Size
MOLE CONCEPT FOUNDATION BUILDER (OBJECTIVE) 1.

(D)

2.

(D)

3.

(B)

4.

(A) (Most stable isotope of carbon)

5.

(D)

6.

(C)

7.

(A) Moles of gas =

5.6  0.25 22.4

Molecular weight of gas =

7.5  30 0.25

Hence NO. 8.

(A) Molecular weight of C 60 H122  60 12  122  842. 842 Weight of a molecule =  1.39 10 21 g . 23 6.022 10

9.

(A) 1 mole contains Avogadro number of atoms.

10.

(A) 1.4  0.05. 28 Number of atoms = 0.05  2  6.02  1023 . = 6.02  1022 .

Moles of N 2 

11.

(D) (A) (B) (C) (D)

12.

22.4  10 3  NA  6.022  10 23 22400 22  6.022  10 23  3.011  10 23 44 11.2  6.022  10 23  3.011 10 23 22.4 0.1 6.022  10 23  6.022  10 22

(C) Number of gms of H 2SO4  0.25  98  24.5

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 1

13.

(D)   0.5 2 Volume of H2 in l = 0.5  22.4  11.2l .

Moles of H 2 

14.

(D) 19.7  1000  100 197 Atoms of Au = 100  6.022 10 23  6.022 10 25 .

Moles of Au =

15.

(A) Mass of one molecule of CO 2 

16.

44  7.3110 23 6.02 10 23

(C) Number of moles of H 2 

0.224  0.01 22.4

17.

(B)

18.

WH  3  3  9g [B]

19.

In one H2O molecule: 10 proton, 8 neutrons, 10 electrons 36g  2mols Hence in 36 ml, n H2O  18g / mol  Protons = 2N A  10  20 N A [C]

20.

n atoms 

WN  3  14  42g

w . Hence it should be of same weight ‘W’ at.wt

[A] 21.

no. of moles =  [B]

22.

23.

24.

10 3 N A  10 3 NA

wt  103  mol.wt  103 M 0 g  M 0 mg

1 16 A:12 g ; B   16  8g ; C : 10 g ; D   8g 2 2  [A] A : 2.5  5N A  12.5 N A ; B :10N A ; C : 4  3N A  12N A ; D  1.8  8N A  14.4N A . Hence [D] 52 amu  13 4 amu [C]

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 2

25.

One ion contains: 7 + 24 + 1 = 32 e  total es  2 N A  32  64 NA [B]

26.

n C  0.5  6  3 [D]

27.

28.

29.

30.

 wt = 36 g

28 46 36 54 ; B: ; C: ; D: 44 46 18 108  [C] A:

180  10 18  no. of es  10 10 N A  100 N A [D] n H 2O 

2.48  0.01 248  nH 2O  5  0.01  molecules  0.05 N A [c] n Na 2S2O3 .5H 2O 

n Ag 

90 10 1 1    atom  N A  5 1022 100 108 12 12

[c] 31.

n H 2O 

18  333 = 9. Hence [B] 54  (96  3)  (18 18)

32.

n H 2O 

0.018  103 . Hence, molecules = 103 NA 18

 [C]

33.

n N 3 

4.2  0.3 . 14

 total = 0.3  8N A  2.4N A

 [A]

34.

35.

3.42  0.12 342  atom = 0.12 N A  [D] n C  12  n C12H 22O11  12 

8.4  0.1 84 Each contain (12 + 6 + 24) protons n MgCO3 

Hence, total  0.1 42NA  2.5 1024 [B]

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 3

36.

n total 

4.4 2.24   0.2 44 22.4

 molecules = 0.2N A

[B] 37.

[D]

38.

n gas 

w w  mol.wt. 3a

[B] 39.

40.

41.

42.

43.

558.5  10 moles 55.85 In 60 g carbon, n C  5 [A] n Fe 

 twice = 10 moles

Say n Mg  PO   n ; then n O  8n 3 4 2 0.25  8n = 0.25  n   3.125  10 2 8 [B] w w 2 : 2  2 :1 nx : ny  10 20 Hence [B]

  

X 46  96  180  180  X  55.9 100 [C] 25.4 8 1 1 :  :  2:5 127 16 5 2 Hence I 2O5 . [C] n I : nO 

44.

mol. Wt = 2 VD = 100 71 w chlorine  100  71g 100 w metal  29 g [A]

45.

(D)  CaCO3   CaO CO2 1

1

1

Quantity of limes tones = wt. of one mole mole of CaCO3 = 100 kg 46.

(A) Moles of H 2S  2 11.2 Moles of SO 2   0.5 22.4

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 4

SO 2  2H 2S  3S  2H 2O moles 1

2

given

2

0.5

3

2 3 0.5 x  1.5 1

L.R. 47.

(C) 100  1.724 58 Moles 2H 3PO4  3Mg  OH 2  Mg 3  PO 4  2  6H 2 O

Moles of Mg  OH 2  Moles

2 2  1.724 Given 3

3

Weight of H 3 PO 4  48.

1

6

2  1.724  98  112.6g 3

n H2O  n CH3OH  2  4

 wt  4 18  72g

[D] 49.

WO  3.6769  2.0769  1.6g with 2 mole X   5 mole'O ' 1.6 with ' n ' moles   mole 'O ' 16 0.2 n  0.04 5 [A]



50.

Ag2CO3   2Ag 2.7 WAg   2 108  2.11g  216  60  [A]

51.

n CO2  2  n C2 H5OH  2  WCO2  2  44  88g Hence [D]

52.

53.

54.



KClO 3   KCl  3 O 2 2 48g Hence % loss in wt =  100  39.18 122.5 [C] 2 2 2 n Fe   n H 2O   Wiron   56  37.39 3 3 3 [A]

n CaCO3  n CaO 

1.62  n CaCl2  0.0289 56

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 5

% of CaCl2 

0.0289 111 100  32.11% 10

[B] 55.

(D)

3BaCl 2  2Na 3PO4  Ba 3  PO4  2  6NaCl Moles 3 2 1 6 1 0.2 0.5 0.2  0.1 2 (L.R.) 56.

Ca  OH  2  H 2SO 4   CaSO 4  2H 2O 0.5

0.2 LR

n CaSO4  n Ca  OH   0.2 2

[A] 57.

A  2B   C  3D 5

8 LR

nB n  4 ; n D  3  B  12 2 2 Hence [B] nC 

n : 4Al 58.



3C

2400  200 12

1350 50 27

 

Al4C3

L.R given 4Al 144    w  1800g given 50  W  [D]

59.

2A   2B B   2C 3C   4D

60.

61.

2 2 4  n D  nA    2 1 3 32  3 [D] Mol.wt.  0.8  28  0.2  32  28.8 M  VD   14.4 2 [C] Dcl2 wrt air 

Dcl2 Dair



M cl2 M air



71 29

Hence [A]

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 6

62.

30.4 14  16x   14  x  2 100 M 46  oxide   1.44 MO 2 32

Say NO X . Then

 Doxide wrt O2 [B]

63.

molality 

n w solvent

  1000  urea : NH 2 C NH 2    ||   O  

18

60 1000  0.192 1500  1.052  18   [B] 

64.

65.

66.

1 n Molarity  1000  98 1000  0.01 V  mL  1000 [D]

 Al3   20  0.2  2  0.2M   40 [A]

1 mole KMnO4   5 moles FeSO4 V  0.01   50  0.01  V  10mL [D]

67.

 100  4 n H     0.001 2  2 10  1000 

 no. of H  2 104 N A  1.2 1020 [B] 68.

3 molal  3 mole NaOH in 1000g solvent   120  1000   vol      1009mL d  1.11  n 3 Molarity  1000   2.97 V  mL  1.009 [A]

69.

(B)

2.65  1000  0.1 M. 106  250 0.1 10 After dilution of 10 mL solution =  0.001M 1000 n NaCl 1 70. X NaCl    0.0177 n NaCl  n H 2O 1  1000 18 [A] CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 7

Molarity of NO 2 CO 3 

GET EQUIPPED FOR JEE MAIN 

1.

KClO3   KCl  3 O 2 2 3 2Al  O   Al 2O 3 2 2 nO n Al2O3  2  1 3 2 [A]

2.

Consider 1 L solution 29   d 1000   H2SO4  3.6  98 100  d = 1.22 g/mL [A]



N2

3. n:

3H2

10

, n O2  3

 

2

2NH3 

15 LR

10  5 n N2  5

 n H2  0

10 moles

[A]

Fe2  SO 4 3  3BaCl2   3BaSO 4  2FeCl3

4.

n:

1

? n BaCl2 3



n FeCl3 2

2

1

 n BaCl2  2  3  0.75moles 2

[C] 5.

3CuSO4  2Al   Al2  SO4 3  3Cu displaces

54g Al 192 g Cu displaces 27g Al     96g [C]

6.

CH4



2O2

 

CO2



– 5 8 5–4=1 – 4 n CO2  4 ; nCH 4 (remaining) = 1

2H2O – 8

[A] 7.

X C10H X  nO 2  10CO 2    H 2O 2 X Hence, n  10  4 X  with 1 mole C10 H X    10   moles 4  with 2.5 moles   32.5 moles

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 8

x 32.5 1   13 4 2.5  x  13  10   4  12 [C] i.e. 10 

8.

9.

10.

with

100g CaCO3   2mole HCl with  25L   g     0.75 M HCl  1000     0.9375g [D] 2.125  V  L   Molarity 143.5 2.125  1000  Molarity   0.59 143.5  25 [B] with 2X   3 16g Oxygen n AgCl  n Cl  n HCl 

with

1g   0.16g Oxygen 3 16  X  150 0.16  2 [D] 11.

12.

3 2Al  O2   Al2O3 2 1 n: n 2 3 with 2  27g Al   mole O2 2 with 1    mole 2 2  27   18g 3 [D] n BaSO4  nSO2  nS (POAC on S) 

13.

8 1  32 4

 [D]

n NaBr  n1 , n KBr  n 2  say  0.97 n AgBr  n Br  n1  n 2   0.00516 108  80  Also, n1  103  n 2  119   0.560

0.56  103  0.00516  0.00178 16  WKBr  119n 2  0.212 g [B] 16g 31.2 A : nH  4  4 ; B : nH  4  1.64 16g 76  n2 

14.

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 9

C : n H  22 

34.2 36  2.2 ; D : n H  12   2.4 342 180

Hence [A] 15.

Total atoms

= 200  0.05  NA  1020  NA

 0.05 NA  31022 [C] 16.

Mol. Wt of A 2 B3  150  96  246 

For 5 mol,  246  5 g = 1.23 kg

[C]

17.

18. 19.

20.

21.

200 144  6.43 N A ; C  N A  3  9N A 342 48 D : 2.5  3N A  7.5N A . Hence [A]

A :10N A ; B :11 

[D] obvious 1 1 1 1 A :  3N A ; B :  26N A ; C :  8N A ; D :  2N A 44 114 30 26 Hence [A]

9.2  2  n 1  n  0.4 46 [C]

n CO2  n , say. Then n O  2n  

22.

 wt  0.4  30  12g

8 1 n 16 4

[D]

A : 0.2  14 g  2.8g ; B :

3 1023 6 1023

12 g  6g ; C : 32 g ; D : 7 g.

Hence [A] 23.

[D]

1 gram molecule: 44 g 1 molecule of CO 2 = 44 amu

24.

n H  n  2  2n  4  10n

n C  2n 1  2n n C : n H  1: 5 [A] 25.

Total charge = 1 N A  3e  3N A e coulomb Hence [D]

69.98  Mol.wt  2112  mol.wt  360 100 [D] CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 10 26.

12g H 2O

8% H 2O 

27.

45g silica   45g silica 43g others 43g others 100goriginal ' w 'grams 8 % of w = water i.e. 92 % of w = silica others 92 Hence,  w  88g  w  95.65 100 45 % of silica  100  47% 95.65 [D]

28.

M3N2 . 28 % nitrogen 28    3M  28   28  M  24 100 [C]

29.

0.014%  mol.wt  2  at.wt of N 0.014 i.e.  M  2 14  28 100 2800 M   2 105 14 103 [D]

30.

(A) Average atomic mass =

90  20  21x  22  10  x  100

 20.11

x = 9% 31.

(B)

32.

(C) 6.023  10 23 1 6.023  10 23 3.01 10 22 Moles of HCl =  0.05 6.02  1023 3.01  10 22 HCl   0.05 6.02  10 23

Moles of Ca  OH  2 

Ca  OH  2  2HCl  CaCl 2  2H 2 O 1

2

1

0.05

1 0.05  1  0.025 2

 L.R. 33. (A) CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 11

1.595  0.01 1595 Weight of solvent = 100 – 1.595 = 98.505 98.505 Volumes of solvent   82  10 3 L 1.2  1000 0.01 Molarity   0.12M 82  103 (B) 28 (A) atoms of O 2   6.022  10 23 ~ 3  10 23 32 3 (B) atoms of Be   6.022  10 23 ~ 2  10 23 9 8 (C) atoms of C   6.022  10 23  4  10 23 12 19 (D) atoms of F2   6.022  10 23  1 10 23 19 (C) X Y X Y 20 80 : 1 : 2  XY2 10 200

Moles of CuSO 4 

34.

35.

36.

(C) Auogaduos hypothesis

37.

(A) 3 2.68   0.00335 24 100 Number of magnesium atoms = 0.00335  6.022  10 23  2.011021 atoms. (A) 25  10 3 Moles of comphon   0.164  10 3 10  12  16  16 Number of atoms  0.164  103  6.022  10 23 .  9.9  1019 (D) Moles of e   52  2  54 .

Moles of magnesium =

38.

39.

40.

(B) Moles of Ag =

1 . 107

1 107  2 107  2  32   Mass of Ag 2S   1.1495 107  2 1.1495 Mass of ore required =  100  85.78g 1.34

Moles of Ag 2S required =

41.

(D) Moles of Al = 27

27

1

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 12

2Al  2NaOH  2H 2 O  2NaAlO 2  3H 2 Moles 2 2 2 2 3 31 Given 1 excess  1.5 2 (L.R.) Vol. of H 2 evolved = 1.5  22.4  33.6 L . WINDOW TO JEE MAIN 1. (A)

n solub le Vso lub le Lt 

Molarity 

Vsolution is affected by Temperatuere. 2.

(C)

n Fe 

560  10 56

No. of atoms = 10 NA In 70 g of N In 20 g of H 3.

(A)

5.

(B)

70  N A  5 NA 14 20 no. of atoms =  N A  20 N A 1 no. of atoms =

4.

(D)

6.02 10 20 NA Molarity   0.01 0.1 6.

(C)

7.

(C) V=1L

Wtotal  11.021000  1020g nsoluble = 2.05

Wtotal 

352.8 100  1216.55g 29 = 1020 – 123 = 897 g

molality 

2.05  2.28 0.897

8.

(B)

9.

(B) V = 1L nsoluble = 3.6 wsoluble = 3.6  98  352.8

352.8 100  1216.55g 29 1216.55 density  1000 w total 

= 1.22 g/ml

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 13

10.

(C)

14.

(A)

11.

(B)

12.

(C)

13.

(C)

weight  N A  species atomic weight In 4 g of hydrogen  4 Number of atoms   N A  2  4N A 2 [Here species = 2 because hydrogen is present as H2] In 71 g of chlorine = 2NA 71 Number of atoms =  N A  2  2N A 71 In 127 g of iodine, 127 Number of atoms =  N A  2  2N A 127 In 48 g of magnesium, 48 Number of atoms =  N A 1  2N A 24 [Here Mg is present as Mg so species = 1] Thus, the number of atoms are largest in 4 g of hydrogen. Number of atoms 

15.

(b) Heavy water is D2O In it, Number of p   1 2  8  10 Number of e  1 2  8  10 Number of n 0  1 2  8  10 (D have1 n0 because it is actually, 1H2)

16.

(d) 18 g H2O contains 2 g H  0.72 g H2O contains 0.08 g H. 44 g CO2 contains 12 g C  3.08 g CO2 contains 0.84 g C

 C:H 

0.84 0.08 :  0.07 : 0.08  7 :8 12 1

 Empirical formula = C7H8

17.

(c) 3 M solution means 3 moles of solute (NaCl) are present in 1000 L of solution. Mass of solution = volume of solution  density

 1000 1.252 = 1252 g Mass of solute = No. of mole  molar mass of NaCl

 358.5g = 175.5 g Mass of solvent = (1252 – 175.5)g = 1076.5 g = 1.076 kg

Molality 



moles of solute mass of solvent in kg

3  2.79m 1.076

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 14

18.

(a)

M1V1  M 2V2 V1  V2 10  2  200  0.5  200  10 20  100  210 120   0.57 M 210

Final concentration, M 

FOUNDATION BUILDER (SUBJECTIVE) 1.

2.

X 2X X  y  given  . For B :  Y 20 40 20 1.6  0.1moles  6  10 22 molecules 16 Each molecule has (6 + 4) = 10e s n CH 4 

 total e s  6 1023 3.

n H 2O 

18g  1mole 18g mol

1 molecule has (2 + 8) = 10 e s  1 mole contains 10N A electrons. 4.

O2 :10 e,8 protons,8 neutrons per ion. in1mole:10N A e,8 N A protons,8N A neutrons

5.

Atomic mass = NA  mass of oneatom

 6 1023  6.64  1023 g  40 g wt 1  wt of one atom 3.98 10 23  2.5 1022

6.

no. of atoms =

7.

removed  1021  44amu  7.35 102 g CO2 ,remaining  200  73.5  126.5mg n CO2 

8.

126.5 103  0.002875 44

1mole N3 charge  NA  3e  2.88 105 C

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 15

9.

3.2 103  2  10 4 moles 64 n S  n Na 2S2O3 .5H 2O  2  2  5 103  10 2 n O  nSO 2  2 

n O : nS  10.

11.

104 102

 0.01

n O  3  n NaNO3  2  n NO2 1  m  10m   2   0.03  0.333  0.363 6 1 n N  n NaNO3  n NO 2  10 103  6 = 0.01 + 0.166 = 0.176 23 6 10 t s   6 1017 s 6 10 6 1017 t  hr    1.67 1014 3600 1.67 1014 t  yr    1.9 1010 years 24  365

12.

atomic wt = 6.644 1023  6 1023 = 40 g/mol 40 1000g n   1000 moles 40 g / mol

13.

nC 

106 g 12g / mol

No. of atoms = n C  6 1023  5 1016 14.

15.

16.

r = 0.1 inch = 0.254 cm 85.6 Fe   ball 100 ball  Vball  density 4 3    0.254   7.75  0.532 g 3 85.6 Fe   0.532 g  0.455g 100 0.455 n Fe  and no. of atoms = 4.9 1021 56

0.086  starch = wt of 1 atom = 31 g 100 3100 starch   3.6  104 0.086 VNH 3  n NH 3  22.4 L

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 16



17.

18.

3.4  22.4  4.48L 17

PV 1 1   0.04464 RT 0.0821 273 n moleculs  n O2  N A  2.69 1022 n O2 

O3  O2   600mL Vml  600  V  mL

V  600  V   32  1g  48  22400 22400  V = 200 mL 19.

Element

% (with in 100 g)

K

40.2

Mn

26.8

P

33

no. of (in 100 g) atom 40.2  1.03 39 26.8  0.48 55 33  1.06 31

ratio 2 1 2

K 2Mn P2 20.

Say

nO  n

n H  15n 70 And n C  15n  10.5n 100 C10.5H15O or C 21H30O 2 is empirical formula 1 Mol. Wt   314 0.00318 C21H30O2 Then

21.

weight

9.03  10 20    0.311g weight

6.02 1023   mol.wt. mol.wt  207.33g 131.3  19n  207.3  n  4 22.

23.

58.97 102  59.9  n C  5 100 13.81 H  102  14.08  n H  14 100 27.42 N  102  27.97  n N  2 100 C5H14 N 2 C 

C 

12 12  CO2   0.9482  0.2586 44 44

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 17

n C  0.02155 2 H   H 2O  0.02154 18 n H  0.02154 n C : n H  1:1 CH 24.

12  cylinder 100 cylinder  r 2 h  density Co 

  3.14  6.25  10   8.2  1610.7



Co 1 12  n Co   1610.7  3.28 58.9 58.9 100

 no.of atoms  3.28  6  10 23

 1.98 1024 25.

Mol. Wt = wt of 1 mole mix = 2VD = 76.6 (x mol. NO2 + (1 – x) mol. N 2O4 ) = 76.6 g  x  46  1  x   92  76.6

15.4  n NO2 in 1 mole = 0.335 46 100 n mix in100 g  76.6 x

 n NO 2 in 100  0.335  n mix

= 0.437 26.

molality 

n solvent

1000

Consider 1L of solvent

C2 H5OH mol.wt  46

n=8 solvent  1.025  1000    8  46   657

molality 

27.

8 1000  12.18 657 

2NaHCO3   Na 2CO3  CO2  H2O  

Na 2CO3   no effect loses

2   84g  NaHCO3   62g  CO2  H 2O  loses

g   0.124

0.124  168  0.336 g 62 0.336 100 % of NaHCO3   16.8% 2 and Na 2CO3  100  16.8  83.2%

 

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 18

28. C 74.27

74.27  6.1892 12 7.79  7.79 1 12.99  0.928 14 4.95  0.309 16

H 7.79 N 12.99 O

%

29.

4.95

6.1892  20 0.309 7.79  25 0.309 0.918 3 0.309 0.309 1 0.309

C20 H 25  N3O 20 of C atoms  100 49  40.816 %

2CH3CHO  O 2  2CH 3COOH 20g 10g : 20 10  0.45  0.31 n: 44 32 L.R (A) n CH3COOH  n CH3CHO  0.45

CH3COOH  27.27g. 10 20 44   0.852 32 2  n O2  32  2.727g

(B) n O2  left  

 O2

(C) % yeild 

23.8  100  87.2% 27.3

30.

3 20 4 40 8 50 n CH  n A        3.2 2 100 2 100 3 100

31.

n CH 4  n1 and n C2H 4  n 2 ,say

now, n1 16  n 2  28  5g 14.5 also, n CO2  n1  2n 2   0.33 44  n1  0.193 and n 2  0.068

CH 4  100 16n1 100   60%. 5 5 %C2 H 4  40% %CH 4 

32.

POAC on carbon n C  n K 2CO3 1  n K Zn 2

 moles of product 



2 Fe

 CN 6  2

n K2CO 3 12

12

 0.0166

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 19

33.

n Cu  n Cu  NO3  .3H 2 O (POAC on Cu ) 2

 10  product      63.5  124  54  63.5   38.03g 34.

AgNO3  NaCl  5.77 4.77 n n 170 58.5  0.03394  0.08 L.R. n AgCl  n AgNO3  0.03394

AgCl 



NaNO3

 AgCl  0.03394  143.5  4.87g

35.

 CaCO3   CaO CO 2  n1

n1 

MgCO3   MgO  CO2  n2

n1  100  n 2  84  1.84 n1  56  n 2  40  0.96 n1  0.01 n 2  0.01  %CaCO3  36.

0.01 100 100  54.35% 1.84

Cl2  2KOH  KCl  KClO   H 2 O

3KCl  O  2KCl  KClO 

3

1 1 3 n Cl2 n KClO4  n Cl2     1 3 4 4 1385  n Cl2  4   40  39  35.5  64 

 Cl 2  40  71  2840g

37.

POAC on Cl (eventually on completion) n Cl2  2  n KCl 1  n KClO4 n Cl 142  2  2  4  0.5 71 4  3.5moles 1g KClO3 n 2 moles

 n KCl 

38.

n1 moles

KClO 4  KCl

KCl  O 2

3 146.8 n O2   n 1   n1  0.00437 2 22400 n2 

1g  n  0.00379  39  35.5  48 1

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 20

3 n 2  0.00284 4  1g  O 2  0.79029g

n KClO4 

resiude

0.00284  39  35.5  64   100 0.79  49.789%

 %KClO 4 

39.

 CH 3 x AlCl y  CH 4  yCl  Cl  AgNO3  AgCl   NO3 1. n CH4  x.n  CH3 

x

AlCly

0.222 0.643   x. 16 15x  27  35.5y 

2. n AgCl  n Cl  y.n CH3  

x

AlCl y

0.996 0.643  y. 108  35.5  15x  27  35.5y 

x  1.99  2 y 0.643  2y  0.222 in1,  16  30y  27  35.5y  1 2 

 y  1 and x  2 40.

3  KClO3   KCl  O2 2 6.125g Zn  2HCl  ZnCl 2  H 2

H 2  1 O2  H2 O 2 in (1), 3 n O2   n KClO3  0.075 2 in (3), n H 2  2  n O 2  0.15 in (2), n Zn  n H 2  0.15 41.

42.

(1) (2) (3)

Zn  0.15  65.3  9.795g (A): B, (B): A, 7 7 (C): n C   n B  . 2 2 C  O 2  CO, CO 2 n1

n2

POAC on C 12 n C   n1  n 2  1 12 POAC on O : n O  n1  2n 2 

20  1.25 16

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 21

 n 2  1.25  1  0.25 and n1  0.75  n CO : n CO2  n1 : n 2  3 :1 43.

2NaOH  H 2SO 4  Na 2SO4  2H 2O n NaOH  15  1 1 4  n H 2SO 4       7.5 10 2  1000  10 2 H2SO4  strength  1000 VH2SO4  mL 

 6.125g / L 44.

Molarity 

n 10 103  1000  103  0.1M V  mL  100

in gram / L  0.1   39  16  1  5.6g / L

45.

 100  4 n SO2  n H 2SO4     0.001M  10 4  1000   no. of ion  n SO2  n A  6  1019 4

46.

n CuSO 4 .5H 2 O  n Cu 2  0.5  0.01  5  10 3

weight  n  mol.wt  5 103  249.5  1.2475g 47.

M1V1  M 2 V2  M 3V3 50  0.5  75  0.25  M final  M 3  50  75  0.35Molar

48.

Molality 

49.

n I2

n

1000 solvent 3 30  1000  0.4molal 250

n I2  n C6 H 6

 0.2

Say, we have 1 mole mix. Then, n I2  0.2 and n C6H 6  0.8  molality 

 50.

n I2

C6 H6

 1000

0.2 1000  3.205m. 0.8  78

Consider 1L solution.  t solution  1000  1.06  10609.

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 22

10  solution  106g 100 n KCl Molailty  1000 Vsolution (mL) 106 74.5  1000   1.4228M 1000

KCl 

51.

30%NH3 .  70%water. 70 i.e.  solution  water  105g 100 100 i.e. solution  150  150g 70  150 Vsolution    166.67mL density 0.9

52.

Consider 1L of solution, solution  1.025 1000  1025g

n ethanol  M  V  8 1  8moles ethanol  8  46  368 n molality  ethanol 1000 solvent 8   1000 1025  368  12.176molal

53.

2SO 2  O 2  2SO3

nSO 2  nSO3  nSO3  5 54.

55.

56.

4FeS2  11O2  2Fe2O3  8SO2 600 800 5  23 120 32 1 So moles of Fe2O3   2.5 2 146 n NH3  n HCl  4 36.5 Wt NH3  4 17  68g 2H 2  O 2  2H 2O 6 29 3  0.90625 2 32 LR

wt H 2O formed  0.90625  2  18  32.625 g wt H 2 left   3   0.90625  2    2  2.l325g 57.

245 w 3  2 95 58.5

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 23

58.

w  226 g AgCl AgBr n1

n2

 n1  n 2 108  60.94 %Ag  100 n1 143.5  n 2 188 100 n  1  0.31955 n2  n1     35.5 100 n n1  35.5 %Cl  100   2  n1 143.5  n 2 188  n1    143.5  188  n2   4.856% %Br  100   60.94  4.856   34.2%

59.

  CO2  H2O  unbalanced   COOH2  H SO 2

4

POAC n C n CO2  1 n  COOH   2 

10 2 2  90 9

2 V CO2   22.4L  4.977L 9 60.

acid is H3A. salt is Ag3A

1moleAg3A  3mole Ag n Ag 0.37 108  n Ag3 A    0.00114 3 3 0.607   0.00114 mol.wt of Ag3 A  mol. wt  108  3  A   531

 A  207

 wt of H3A  210 GET EQUIPPED FOR JEE ADVANCE ONE OPTION CORRECT 1.

N2  3H 2 say, wt :14x 3x 14x x 3x to  28 2 2 x 3x tt y  3y 2 2 NH 3 was 40% by mol.



2NH 3

 2y

40  x 3x   3y  2y   y 100  2 2  2x x  5y  2x  2y  y    3.5 7 y

i.e. 2y 

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 24

X N2

x y   1 x 2  y   2      2x  2y  2  x y  1 1.75  1 0.75   2  2.5  5  0.15

(A) 2.

n(A)  n(B)  M A  n(A)  1.4g and M B  n(B)  0.8 M 0.8  B   0.57. M A 1.4 (C)

3.

with 3.2g metal   0.4g oxygen 64g metal  g oxygen

64  0.4  8g 3.2 128g metal with 16g O i.e. M 2O (B)



4.

with 4M    96g O.  sin ce X 4 O 6 

with 5.72g    4.28g O 5.72  6 16  MX   32 4  4.28 (A)

5.

 224   0.01 mol.wt 22400 wt 1 mol.wt    100 n 0.01 n

 3  at.wt.  100  at.wt  33.3g 33.3 mass of one atom   5.53 1023 g 6.02 10 23 (C)

6.

7.

 PV 2  0.35    3.123 102 mol.wt RT 0.0821 273 1 i.e.  3.123 102 2  At.wt at.wt 16 wt of one atom   . NA NA (C) n

I 2  Cl2  ICl, ICl3 n1

n2

POAC on I CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 25

n(I) 

25.4  n1  n 2 127

POAC on Cl 14.2 n(Cl)   n1  3n 2 35.5  n1 : n 2  1:1 (A)

8.

FeSO 4 : n1  SO 42   n1 and Fe 2   n1 Fe 2  SO 4 3 : n 2  SO 42   3n 2 and Fe 3  2n 2

n1  3n 2  given  

n1 3 n2

Fe 2 n n n  1  1 2  3: 2 3 Fe 2n 2 2 (D) 9.

0.36M : V1 say and 0.15M : V2say M V  M 2 V2 M final  0.24  1 1 V1  V2 36V1  0.15V2   0.24 V1  V2 V 0.36  1  0.15 V2 or  0.24 V1 1 V2 V  V  0.36  1   0.15  0.24  1  V2   V2 V 0.09 3  1   V2 0.12 4 (D)

10.

   0.24 

At mass  N A  mass of an atom

 6 1023  3.98 1023  24g (C) 11.

Fe 2  Fe  CN 6 

Fe 3  56 7   C 6 12 3 (C) 12.

obvious (D)

13.

obvious (B)

14.

1gatom  1mole of atom  14g.

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 26

(A) 15.

Na 2CO3  2HCl  2NaCl  H 2O  CO 2 n HCl  2  n Na 2CO3  VHCl  M HCl

 V3  2

1.431  V  9mL. 106

(B)

16.

17.

They must have same mol. wt. (C)



V2micron sphere V

0

20 Asphere

4    2 10 6 3  3  109 3  9 4    2 10  3

(A) 18.

19.

3  KClO3   KCl  O2 2 n o2 0.1 2 n KClO3    3 3 30 2 2 2  122.5  % purity  30 100  81.66% 10 (B) V  ml   m 1 0.65   6.5  10 4 moles 1000 1000   BaCl 2 .2H 2 O  137  71  36   6.5  10 4  0.1586g n

 BaCl2  137  71  6.5  10 4  0.1352g (A)

20.

1.36  V  200  2.4  1.24 500  V  102.941mL (B)

11.5

100  M C6 H5CH3  9.31g 71

21.

t 

22.

CuSO 4 .5H 2O  n1 , MgSO 4 .7H 2 O  n 2 total  t  5g and anhydrous 3g  249.5n1  246n 2  5

M C6H5COOK



and 159.5n1  120n 2  3 on solving, n1  0.0149 and n 2  0.0052  CuSO 4 .7H2 O.  3.729g

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 27

 %by  t 

3.72 100  74.4% 5

(C) 23.

C 7 H 6 O 3  C 4 H 6 O 3  C9 H 8 O 4  C 2 H 4 O 2  : 2g 4g 0.01449 n : 0.0144 0.039 L.R

theoretical yield  0.01449  M C9H 8O 4  2.69  %yeild  80.76% (A) 24.

25.

26.

2XI3  3Cl 2  2XCl3  3I2 0.5 0.236 n XI3  n XCl3    M  381  M  106.5   M  138.88  139 (B) 2 2 no.of molecules  500cm 0.21nm  n   V  Molarity NA 6 1023 n i.e.V   2.395  10 5 L.  4.24 256  (B)

in 10 mL CuCl2  n1 , and CuBr2  n 2 n AgBr  2n 2 and n AgCl  2n1  2n 1 143.5   2n 2 188   0.9065g

and  2n 1  2n 2  188  1.005g then n1  0.00115 and cuBr2  0.35g  25% and 58%

(A) 27.

n XH 4  2n and n X2 H6  n, say





n x  n XH4  n X2H6  2  4n 5  4n and  2n  X  4   n.  2X  6   5.628 X 5 5 i.e.  X  4    2X  6   5.628 2X 4X 5 10 5 7.5 or,     5.628 2 X 2 X 17.5 or X   27.86  28 0.628 (A) i.e.

28.

M AgNO3 

0.0125  39  80   0.0105M 1mL

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 28

42.5  n AgNO3 1000  0.00446  n NaBr  2n Na 2SO 4

 0.0105  n AgNO3





n1

n2

 n1  2n 2  0.00446



also, n1 103  n 2 142  2 5  t of 1 29.

th

5

portion



Let acid be HA Salt: BaA 2 .2H2O

BaA2  H 2SO4   BaSO4  2HA

4.29 21.64   0.477 137  2A  36 1000  A  121  HA  122 

30.

total moles =n (say) 0.15 n  moles of CH 3COOH  0.15n  60  0.85 n 18  30 30 n   1.234 9  15.3  n NaOH n CH3COOH  0.15 n  0.18519  VNaOH  18.5 L  B 

31.

C2 H 6  3.5O2 n1 moles

  2CO2  3 H 2O

C2 H 4  3O2   2CO2  2 H 2O n2 moles

PV 1 40   1.218 RT 0.0821 400 130 also 3.5 n1  3n2  nO2   4.06 32  n1  0.817 n1  n2 

n2  0.401  %C2 H 4  33% and C2 H6  67%  A 32. Al K S O

no. of atom 0.3889 0.388 0.775 3.1

% 10.5 15.1 24.8 49.6

ratio 1 1 2 8

2

33.

Vmolecule

  3   100 A   300 A 4  

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 29

 1.299 1024  mol. Wt  N A Vmol  desnity

 6 1023 1.299 1024 1.2 103 kg m3  939 kg (B) More than one correct 1.

3 moles in 1L 1250 g 

wNa2S2O3  3   46  64  48   474 474 100  37.92% 1250 3 3 (B) x    0.065  1250  474  46.11 3  18   n 1000 (C) molality of Na   wsolvent 3 2  1000  7.73 1250  474  (A) % by weight 

2.

mol. wt = wt of 22.4 L=28.896 g mol.wt VD   14.48 2 (A) and (B)

3.

[A] : 32 g

[ B]

1  64  32 g 2

[ D] : 32 g

Ca  NO3  2  Na2C2O4   CaC2O4  2 NaNO3

4. millimoles :

6 3

3 LR

3

6

[A],[C],[D] 5.

n

1.12  0.02 56  0.02 100  2 g

CaO n CaCO3 

wCaCO3

wCaCl2  0.02  111  2.22 g  wNaCl  2.22 g

[ A, C]

6.

nNaCl  100 m moles ; n HCl  300 m moles



nCaCl2  200 m moles 200 Ca 2 , 400 Cl 



cation 600 3   anions 800 4 Cl    800  2 M   400 CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 30

  A ,  C 

7.

Obvious A,B,D  nH  4 

8.

3 mole NH 3

wH  3  14  42 g

WN  3 14  42 g molecule  3  N a  18 1023 atoms  4  3  N A  72 1023 [ A], [B]. [C],[D] 9.

Obvious : [A], [B]

10.

[B],[C]: obvious others depend on volume

14.

Hence [C], [D] 14 Mol. Wt   22.4  28 11.2

Match the following 1.

2.

13 12 100  38.33% 407 6 (II) wt % of H  100  1.47% 407 (III) wt of H: wt of Cl  6 : 6  35.5 (IV) mo. of C: O =13:2 (I) wt % of C 

(a)

wSO2 Wo2

(P) (A) (C) (E)

 2s

(b) d  10 5  2 g cc  sp. gr  2  s  (c) M  2VD  32  Q  (d) molecular 

3.

132 3 44

 at anons = 9(R)

20 (a)  Al 3    0.04 M   400  H    40  0.084   500 Total =0.12 M Cl    60  40  0.2 M   500 (P), (S) 20 (b)  K     0.2M   100

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 31

Cl    20  0.2M   100 (S) 12 (c)  K     0.12 M   100 [ P], [Q]  SO42   6  0.06 M   100 (d) wH 2 SO4  200 

24.5  49  n H 2 SO4  1 2 100

 H    1 1000  5 M   200  SO42   1 2  1000  2.5M   200 [R] 4.

(A) VSO2  11.2 L

wSO2  32 g 1  2 NA 2 (B) n H 2  1 2 VH 2  11.2 L total atoms 

wH2  1 g , , total atoms  N A  P  (C) no. of atoms  0.5  3  N A  1.5 N A [P], [Q], [R] (D) 1moleO2 V  22.4 L Atoms  12 1023 wt  32 g

[S]

COMPREHENSION TYPE Passage 1 1.

wt of 1 atom  1amu  1.66 1024 g. (C)

2.

n S  n H 2SO4  100 wt  3200g. (A)

3.

3.4   M   s  2  32  M  1882.3 (B) 100

4.

C  O 2  n C  n C  n O2  1

 VO2 

20  Vair  22.4C  Vair  112L (B) 100

Passage – 2 1.

Consider 1 L.

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 32

n KOH  6.9  KOH  6.9  56  386.4 30  solu  386.4  solu  1288g 100  d  1.2889g / mL. (A) 134 PV 0.2  2  M H2SO4  2  n NH3   1000 RT 0.0821 303  M H 2SO 4  0.06 (C)

2.

1600  0.205  0.2  V  40mL (A) 1600  V

3.

n H 2S

n H2SO4

5  34 5 1 5 34  V  0.2  5  V  25L (A)

4.



 n H2SO4 

Passage – 3

18g  3 1023 g (D) 23 6  10

1.

m H2O 

2.

Avogadro’s law. (A)

3.

obvious Mass is 16amu. (C)

4.

obvious (A) Passage – 4

1.

AgNO3  NaCl  AgCl  NaNO3 5.77 4.77 n: n AgCl  0.0339 170 58.5  wt  4.88g  0.0339  0.081 L.R (A)

2.

H 2SO4  0.12  98  11.7g (A)

INTEGER

1.

0.5 mole N3 .N 3 has 10e .  5moles.

2.

n

CO2 

132 3 44

nC  3

3.

MCl X : say. mol.wt   M  106.5

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 33





n Cl  n MClX   X   n Cl  n Ag 

0.22x  M  106.5x 

0.51  3  103 170 

6.4  112s (Dulong petite’s law) 0.57 0.22  x   3  103  x  3 112  106.5x  M

8 2800  4 100 56

4.

n Fe 

5.

x  5  20  2  2.6  5x  40  2.6x  52 x  20

6.

n 1  Cn H 2n  2   n   O 2  nCO 2   n  1 H 2O 2   n 1 n 2  7  4n  3n  2  7n or n  2 n 4

 1440  2 mol.wt 60 12

7.

n

8.

5  solu  0.3g  solu  6g 100

9. 10.

0.25  89600  Fe  n  56  n  4 100 CO2  C6 H10O5 1g algae   2g algae 1g strach

1g strach POAC on carbon n CO2 1  n (C6H10O5 )n  6n 1 1   6n  162n 27 1 27  time  8 4.7 10 3 EXPERTISE ATTAINERS 1.

POAC on Co

n Co3O4  3  n Co 1  n Co 

0.2125  3  Co  n Co  59  0.156 g 177  64 

n PPt 1  n Co  ppt  n ppt  mol.wt  1.52g

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 34

2.

90  0.5g Fe  Fe2O3  n1  100 10  0.5g Fe   Fe3O 4  n 2  100 0.45 n1  2   n1  0.04 56 0.05 n2 3   n 2  0.0003 56  wt of mix= 160   n1   232  n 2  0.71g (a)

(b) 0.5g Fe   Fe 2O 3  n 

0.5  n  4.46 103 56  Fe2 O3  0.7142 g n2 

3.

(i) n AgNO3  n AgCl  n NaCl n HCl  n1  n2  2.567   n1  n 2  0.0179 143.5 (ii) NaCl is not affected 1.341 n Cl n AgCl  n 2  143.5  n 2  0.009345  n1  0.0856

Now, n1  58.5  n 2  M  1gram 0.5  M  53.5 0.009345 4.

y z C x H y Clz  O2   xCO 2  H 2O  Cl2 2 2   0.22 0.195 n ………(1)     x   CO2  44  12x  y  35.5Z    y n 0.22 0.0804 …..(2)       H 2O  18  12x  y  35.5 z   2   768   37.24     0.12 PV  760   1000    0.0012  n RT 0.0821  382  12x  y  35.5z  Solving, x  2; y  4 and z  2 C2H4Cl2

5.

…..(3)

Consider 1 mole mix  t  55.4 

N 2 , NO 2 , N 2O4 n1

n2

n3

n1  n 2  n3  1 Now, after heating,

n

NO2  n 2  2n3

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 35

N O 2



   2NO2

4

 no. of moles = n1  n 2  2n 3  1  n 3

New Average mol. Wt  39.57 55.4  39.57 1  n3  n 3  0.4 Now, n1  28  n 2  46  n 3  92  55.4  28n1  46n 2  18.6

……(1)

also n1  n 2  n3  1  n1  n 2  0.6

…….(2)

Solving (1) and (2), n1  0.5 ,and n 2  0.1  5 :1: 4 n

6.

IO 3 n HSO3 n 3  5.8  0.8788   HSO 3  1 3  23  127  48 

 w NaHSO3  9.139 g n 

I in 1st n IO3 

5.8 198

IO3 n I n    IO3  0.00586 1 5 M NaIO3  5.8 198 n

IO3  0.2L  200 mL M IO  n

V 

3

7.

AgNO3  KI  KNO3  AgI 2KI  KIO3  6HCl  3ICl  3KCl  3H 2O M KI  VKI n KIO3 M  20   KI  2 1 2  M KI  0.3M

30 

1 10

1

KI, excess n KIO3 n   KI, excess  10 m mole 2 1 Original KI  50  0.3  15m mole n

Now,

 KI  used   5 m mole

 n AgNO3  n KI  used   5mmole  w (AgNO 3 )  0.85 g  purity  85%

8.

Let % of boron will at. Wt. 10.0 = x Let % of boron will at. Wt. 11.01 = (100 – x) x 10.01  100  x100.01  10.81 100 x = 20% 





CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 36

9.

Let NaCl = w gms  kCl = (118 – w) gms POAC on Cl w 0.118  w 0.2451   M Nacl M kCl M Agcl

w 0.118 w 0.2451    58.5 74.5 74.5 143.5 w = 0.0338 gm Nacl = 0.0338 gm kcl = 0.0842 gm n nacl  5.777 104 n kcl  1.1310 3

POAC on Na; moles of Na 2O 2 = moles of NaCl 1  5.777 104  ;  n Na 2O    2  

1.1310 3   n k 2O    2  

5.777104 Weight of Na 2O   62  0.01gm 2 1.1310 3 Weight of k 2o  94  0.1062 2 % Na2O = 3.58%. % k2o = 10.62 % 10.

CxHy

y C x H y  x  y x  o 2  xCO 2  H 2 O 2 POAC on carbon 5 x  vol.of CO 2 1 Now 1 vol. of CO2 = 10 mL (that obtained by kOH) x=2  Vol. of O2 reactionary = 15 ml Vol. of O2 reacted = 15 ml  1 ml of CxHy react with (2 + y/x) ml O2  5 ml of CxHy react with (2 + y/x) = ml 15 (given)  y= 4 formula = C2H4  11.

(a) CO2  C  2CO POAC on carbon Let CO = x l CO2 = (1 – x) l  x 1  2 1  x  1.6 1  2 – x = 1.6 = 1 x = 0.4 l & (1 – x)0.6 L (b) The molecular formula = M3N2  2 14   100  28 % Nitrogen =    3x  14  2 

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 37

Where x = atomic wt of metal 100  28    24 x    3  12.

monobro min ation C 2 H5   pat1  85%yeildC4 H10 55gm 90% yield

POAC on carbon    x 90 85  55    2    4  1    100 100  412  101   212  61  x = 74.37 gms 74.37 V  22.4L  55.53L  30

WINDOW TO JEE ADVANCED INTEGER TYPE 2.

(4) Boltzmann constant, k 

R or R  k  N A NA

 1.380  10 23  6.023  10 23 = 8.31174 J K–1  8.312

Hence, no. of significant figures is 4 3.

(8) Mass of 1 L solvent = 0.4g mL1 103 mL = 400 g = 0.4 kg Mole of solute 3.2  So molality (m)  Mass of solvent (kg) 0.4 =8m

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 38