Modeling, Simulation and Optimization of Complex Processes

Bock · Kostina · Phu · Rannacher (Eds.) Modeling, Simulation and Optimization of Complex Processes Hans Georg Bock · E...

0 downloads 156 Views 14MB Size
Bock · Kostina · Phu · Rannacher (Eds.) Modeling, Simulation and Optimization of Complex Processes

Hans Georg Bock · Ekaterina Kostina Hoang Xuan Phu · Rolf Rannacher Editors

Modeling, Simulation and Optimization of Complex Processes Proceedings of the International Conference on High Performance Scientific Computing, March 10–14, 2003, Hanoi, Vietnam

With 231 Figures, and 34 Tables

123

Editors Hans Georg Bock Universität Heidelberg Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR) Im Neuenheimer Feld 368 69120 Heidelberg, Germany e-mail: [email protected]

Hoang Xuan Phu Institute of Mathematics Vietnamese Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Road 10307 Hanoi,Vietnam e-mail: [email protected]

Ekaterina Kostina Universität Heidelberg Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR) Im Neuenheimer Feld 368 69120 Heidelberg, Germany e-mail: [email protected]

Rolf Rannacher Universität Heidelberg Institut für Angewandte Mathematik Im Neuenheimer Feld 294 68120 Heidelberg, Germany e-mail: [email protected]

Library of Congress Control Number: 2004115281

Mathematics Subject Classification: 49-06, 60-06, 68-06, 70-06, 76-06, 85-06, 90-06, 93-06, 94-06

ISBN 3-540-23027-0 Springer Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law. Springer is a part of Springer Science+Business Media springeronline.com © Springer-Verlag Berlin Heidelberg 2005 Printed in Germany The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Typesetting by the authors Production: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig Cover design: design & production GmbH, Heidelberg Printed on acid-free paper 46/3142YL – 5 4 3 2 1 0



                                          

                

             !" # $!!%&       '  (  '              )* %+, -.  )/  

 01 2   '        3                     4.   ' &                

'                     

    

 &   5  6            (      /             6     &               

        (        &   

 

                                 5     6   7                 ' &       ' $!!              /&             !! 5 !         5  '        8      &   /     

     

       6 (            '     /   6    

               '

          '       

  

   

 /5          

     ' &  '        '

    /   #$  

 '     '     '

       & 4 / 5   5   '      & 4 / 5           5    /   

  '    

      9  : 

ÎÁ

                    !   "  #$ %  &$ ' !   () # $  (      ((!  ("  # *     +  '   ,-  *+,! .  *   ' / # ! 0  # ( #- '      - 0(! 1   +   ' 1     ' 0  #! %- ,2   ,"# ' 3 # &     4 +#  ! / $ & 0  # . + /  + -5 . " 6 - 7889

.   ) :)   %  .  ;  , ' 





                     

................................................

              

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



                      !  . . . . . . . . . . . . . . . . . . . . . . . . .



    "  #  $% $ . . . . . . . . . . . . . . . .



   &   '(   &  ) . . . . . . . . . . . . . . . . . . . . . .



             

        ! !       " #    $%  & 

&  '           "          !  &  * +

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

  (  ' 

, - . &  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



, - . &  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



 /  & 0  +  1        / . .



   ) $)  

  *(   +' ,      





                     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    !     "# $      !  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  !      %  &  $   ' (  $     "   #  "  $    % . . . . . . . .    $    $)    *  *   & ' " "  & ' !  (  )   (  . . . . . . . . . . . . . .  % * ( *   +  $  $ 

  "*   %   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   *    +,  *  #  (  !  "    + "   , . . . . . . . . . . . . . . . . . . .   + $     % -     + 

)    " ! !  "  "  !  " - !  ! & ' !  " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

  $ . /+ . %    +, 

+    /  %  & ' ( " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  $   0     +  + #   ( . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     +   !       .     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  *  + *       '   ##     * #  " / . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0    /   1 *  2)# *        -  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 





              

       

  . . . . . . . . . . . . . . . . . . .

         



      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

           !        

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

     "    # $ % &        '   " ! (

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

    "   )    

  



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

  &      &! !

 ! 

" #  $    %    &    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

& !  *   

& %  '    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

     "       + ", 

  '"   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

            

( " (  $ 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 &-      .     /&  

   &  #    )      & . . . . . . . . . . . 

     0         $ &  &"    * +  &,



. . . . . . . . . . . 

%!     $ ,  (      

#" &- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1               &   *  !

) .   &   ) . #  #. ) .    . . . . . . . 

                           

     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

            

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 

!"  #     

               . . . .    $ !            

  ! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      %         $   &   

" #   $ % & $ . . . . . . . . . . . . . . . . . . . . . . .  &       ' 

' #

.................................................. 

(   $

)   $        )( !* 

& %&  () () . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   $ 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

                                         

    

   !     " #  $!  %&'(  !!   (        ( ) $  '  !    ! *  $ +'                  !  %&  ( !  (    (          (       +     ""  ( " "      !         !  %& 

   ,       *   -  !.    ! " ! # / %! # ! 0%   ( +   " " ! *    #   !  (   !    !  %&  !.

    + ! !   )     !       !.      # )   # 1  "   !

 

                                                  

        !        !        "                # " $ #              $         %        

        &'(     "    $           )# !            $   #     #     %             *              

 #  #    #                                        +     ,              

   

    

           

   

                  



                                                

                                        

     

 

           

 



  

    !"#  

                      

            



    $ 

 



    

              

       %                                &       '   (          )  

  * + !,-#  . 

 

                        ( 

        

 .    

                

(             %  

    /    

            0                              .                1   .                      (  

              "



2                   

                    2                      2

 



         

      



                     

       

 .  3     

       (P = (V, D, S))         V1 , . . . , Vn            4       D1 , . . . , Dn              C1 , . . . , Cm  2       

2      

      



                       X1 ← I1 , X2 ← I2 , . . . , Xi ← Ii , . . .        Ii   Xi s                                                                                                                                  !                       DX = [1, 10], DY = [3, 8], DZ = [2, 7], DT = [−1000, 1000], DU = [0, 15]  DV = [−20, 20]         x + y = z(c1), y ≤ x(c2), u =

2 ∗ v(c3), x = 2 ∗ t(c4) " var(c)   

         c       #                                                < X, c >   X ∈ var(c)                       $           < X, c >         %                                  & !           %' ( ) *     < X, c > < Y, c >  < Z, c >                  X = Z − Y, Y = Z − X  Z = X + Y  $                             

 

    < X, c > < Y, c >  

      !   < Y, c >    < X, c > " X ∈ var(c ) \ {Y }  c = c

"   DH(X, c, S)         S      <           < X, c >         %               < X, c > +     DH(X, c, S),              X, c >

 

#            !                  !                $     $       %        

" c       -  ha(c)                DH(c)                   ha(c)   DH(c)       .        ha(c)       !                    DH ∗ (c)                 ha(c)     

  

                Π                  var(c)    

       ΠX (c)                                                              !     "                           # $               $          !             A1 = A2 , A1 ≤ A2 , A1 + A2 = A3 , A1.A2 = A3 , A1 = sin(A2)     % &  '                          $   (  a1 X1 + a2 X2 + ... + an Xn = b      

    )*                 ( +   ,        + " ,           )*    +      -  ,           . X1 ← I1 , X2 ← I2 , . . . Xi ← Ii , . . .      Ii   Xi /                 < I1 , ..., In >                               )*       )*                           0             1      )* "                             $  2       

  )*         

3                          !                c    ( S     4   %     0     /        )* '           )* 0                   +    , 

 $ Q 5        0                    $ 6   !      c/       0      !              (                    !                              7  8  9         DT          0   7  :         ; 6 

      



N ARROW (T, c)   DT Q                  < T, c >    Q      

                       

     

         

                  S                     DH (c) ∪ ha(c)                          ∗



  

    

       

   

DH ∗ (c) ∪ ha(c)  

Q   

       

         

               

          

 !    " 

       

      c           S                     DH (c)                         ∗

  #

S

  

ha(S)

    "



 

 

           %      "

S \ {c}

         "

    $

     

ha(S) \ DH ∗ (c)

S \ {c} "  



DH ∗ (c)

 

 "        

      "          

   

   

      

    

Q           DH ∗ (c)         ha(S) \ DH ∗ (c)   Q                  ha(S) \ DH ∗ (c)        DH ∗ (c)                        



 

             

DH ∗ (c)

 

ha(S) \ DH ∗ (c)

    

      

ha(S) \ DH ∗ (c)

     

       

                 c         



        

   

     

DH ∗ (c)

c

 

  

ha(S)\DH ∗ (c)

   



           !    



  

        

"#

      #               #                     #                 $#   % %                 &       

DH ∗ (c)

    

       %    #           

DH ∗ (c)

 

        '&( )              

  

c



  

S

   

 * % +  &#,   



           DH ∗ (c)    

Q             ha(c) !      -#,        DH ∗ (c) .        

     *                

          +  &/#&0    #             

DH ∗ (c)    Q  

      

     &-#&0  

   

DH ∗ (c)

    +  &/#&%    

            



ha(c)

!

      

      

 



 

.               

      !    

  

  

      " 

  #        1 $

1           .       

                            

      

      



          

                                       

                          (c1, c2, c3, c4)                !      "              #           $ z = x + y%             DX = [1, 10], DY = [3, 8], DZ = [2, 7], DT = [1.5, 5], DU = [0, 15]  DV = [0, 7.5] &               %'%(    %            %            DX = [3, 10], DY = [3, 8], DZ = [2, 7], DU = [0, 15]  DV = [0, 7.5] ) %        (                              u = 2 ∗ v         &      #            

                          &      #            

                         

  

      

   



z =x+y

DZ = ([1, 10] + [3, 8]) ∩ [2, 7] = [4, 7]

y =z−x x=z−y

DY = ([4, 7] − [1, 10]) ∩ [3, 8] = [3, 6] DX = ([4, 7] − [3, 6]) ∩ [1, 10] = [1, 4]

z = x + y, y = z−x x=z−y y = z − x, x=z−y x=z−y

 z = x + y

 y ≤ x y≤x x≥y z =x+y

 u = 2v u = 2v v = u/2

 x = 2t x = 2t t = x/2

DY ≤ [1, 4] ⇒ DY = [3, 4] DX ≥ [3, 4] ⇒ DX = [3, 4] DZ = ([3, 4] + [3, 4]) ∩ [4, 7] = [6, 7] DU = (2 ∗ [20, 20) ∩ [0, 15] = [0, 15] DV = (0.5 ∗ [0, 15]) ∩ [20, 20] = [0, 7.5]

= [3, 8], DZ = 2, 7] DT = [−1000, 1000]

x≥y x = 2t

u = 2v, v = u/2 v = u/2

x = 2t, t = x/2 DX = (2 ∗ [−1000, 1000) ∩ [3, 4] = [3, 4] t = x/2 DT = (0.5 ∗ [3, 4]) ∩ [−1000, 1000] = [1.5, 2]

  z = x + y DX = [1, 10], DY y≤x

y ≤ x, x ≥ y x ≥ y, z = x + y z =x+y

y ≤ x, x ≥ y t = x/2, x = 2t

DY ≤ [1, 10] ⇒ DY = [3, 8]

x ≥ y, t = x/2 x = 2t DX ≥ [3, 8] ⇒ DX = [3, 10] t = x/2, x = 2t DT = (0.5 ∗ [3, 10]) ∩ [−1000, 1000] = [1.5, 5] x = 2t DX = (2 ∗ [1.5, 5]) ∩ [3, 10] = [3, 10]

                                                                    

               !  "   !         #                

    $ %!     

            &    '           ( )       *

               

 

 y ≤ x y≤x x≥y

DY ≤ [1, 10] ⇒ DY = [3, 8] DX ≥ [3, 8] ⇒ DX = [3, 10]

 u = 2v u = 2v v = u/2

DU = (2 ∗ [−20, 20) ∩ [0, 15] = [0, 15] DV = (0.5 ∗ [0, 15]) ∩ [−20, 20] = [0, 7.5]

 x = 2t x = 2t t = x/2

DX = (2 ∗ [−1000, 1000) ∩ [3, 10] = [3, 10] DT = (0.5 ∗ [3, 10]) ∩ [−1000, 1000] = [1.5, 5]



 y ≤ x, x≥y x≥y

u = 2v, v = u/2 v = u/2

x = 2t, t = x/2 t = x/2

             

                                                

  

     DX         X             min(DX )  max(DX )   DX                                                           ! " #$                       $     %        X = Y /Z     0 ∈ Z    & '

       (           $ 

   %        X 2 = Y       X         X ∈ [1, 2]  X ∈ [−2, −1]  Y ∈ [1, 4] ) #    #          

        %     DX = [1, 10], DY = [3, 8]    X ≥ Y + 3 ∨ Y ≥ X + 3 $  X  s    DX = [1, 5] ∪ [6, 10]



  

                                        

                                         

            !"    #   $%   &                    

       

!"                      '            (      

         (    

 (           !"          

                       ) D         X  ∆      X                    D   X

X

X

DX (k, s)(0 ≤ k ≤ m, 1 ≤ s ≤ 2k )

(  (k, s)           k      

  s           k             $    D (0, 1)    D  * 0 ≤ k ≤ m      (k, s)   (k + 1, 2s − 1)  (k + 1, 2s) (  + X

X

DX (k, s) = DX (k + 1, 2s − 1) ∪ DX (k + 1, 2s)

 DX(k + 1, 2s − 1) ∩ D (k + 1, 2s) = ∅                    ,     (  (                (          (          ' [x, y]         (   [x, mid(x, y)) [mid(x, y), y]     (              *     X      (    ∆        D  -   markM (k, s)   (k, s)   .             + $ /0/  D (k, s) ⊆ ∆ 1 /2/  D (k, s) ⊆ ∆  D (k, s) ∩ ∆ = ∅ 3 /×/  D (k, s) ∩ ∆ = ∅ X

X

X

X

X

X

X

X

X

X

X

X

      



                                               ∆X    X        

     ∆X = {DX (k, s) | MX (k, s) = + }

     

                   !

             

!"#     $     ΠT (c)              %  ΠT (c) &         '             

               MT (k, s)             (  DX (k, s) ⊆ ΠT (c) ) * DX (k, s) ⊆ ΠT (c)  DX (k, s) ∩ ΠT (c) = ∅  × DX (k, s) ∩ ΠT (c) = ∅

     DX (k, s) DT       +  ,&!            P      X   &-$ P   %        



  

∆X  MX (k, s) 

        

DX (k, s)

    

    

 



(k, s)

 



 

   

   

        

(k = P )

MX (k, s)

          

               !"                

P

  

                   

2P

    #  

          

P

          !"         

w

   $%&     '()

#   

              

 !"         

 *   *  +    

  

DT , {T MT (k, s) | 0 ≤ k ≤ P, 1 ≤ s ≤ 2k }

 #     !"                  '-.) /  

2P

           

    #         !"    

   

P

      

       



  

  

     

     !0$    1     # 2

     ,        

  3       - # 4 ""5        " !"   &   

   

 

2     # 

    

    

 +   

   



X

  

 

      

    +  

     +   × 6    

           2 

3     

X

     

       

  + +        #   

               6 7

         

  



   

           !0$    1

    5    



  

    

1  

      



                  

                                                                     

                

                                 

                     !  "    #                 !               

                           

$%& ' (    )         *(   *+,% --%--. /%,,%0 $-&    )1 )  2 (   2    3) *(   %.    3              4  * ) %.5%6, /%,,.0



                 !! "!# $% & '( )  (  (* +   *   

  

 ,  -

    "-.#/%

##0/ "!##/% 1 2 3

4

3 



3

) 

5



) 



"5% 5 * 5* 6 3 , * )'     7 ' &"!% 1& "!###% / 8( 





) 

3





*

- -         1  $!!! "!##% $ 7'

9 

'(

) 

3

: ;'*'



<



 (  (* :66   3 

,   **  000 9 ! #& ' 9   * ' + += &#/! "000%

  ** > ( -?' ,  9'* +    7 .# 

"!##%

# <

 )  ( 

3 @ 9 7(  8 "!#//% !0 +3  * 2  8 A + 8  ( ,   B  )       **    ,    , A 6       ** +(*  3   A    C+ 9   !0!10 "!##%

                  1    2 1                       2            ! "! #$#%%  !     

                  &   & '  () *+ !     ,  -     .    (++  *+        /.  .      /    /   ,   0 1 & '    20 . ,  .   ,   -   + 3      .  , +        , )  1  /       4..+    .   1  . , 0   + 3        .    #    '      +   .   ,0    1   1  .  .   . ' + 5 1 -     0  6 7        1    +     &        &   .   /  /      1+

 

                                                                  !"# !# !# !$# %# !&'# (    )       (                 8 9 9  " :#$



    

                

                                            

     

   !         !    !          " #   

$  

               %                &

    

    '()   

!       *

      

          +            

  &(   #      

   

                     #  

          ,    %      $                  %  -. / 0      

       .     "                            "     !    - # 0    

         

            

         

   "         " #  '()    

div (σ∇u) = q. u(x)  !   '()    q = q(x)       σ = σ(x)

1

.   !

  

 

   

(2    3,4     314 "   354     364      374  #   3114 8               9 /

#            

∇ × (µ−1 ∇ × E) − ıω σ E = ıωs.   315 17 1,4        





 &( 

   '()  !     :  1           '()   1       " #   "    $ 

          



                 

                     

 

A(m)u = q

 m(x)       σ   σ(x) = em(x) , x ∈ Ω.

                                     ! "                      u q  m #        $        %        A(m)u = q. &!'             ( A     $                     u   m            (       $       u   &!'  m & q       ' $         m    b    u &)     *  +  u '   &!'   ,    -.         -        #                      m     u      b           m   



    

                  

  

                                                         1 Qu − b2 + βR(m) m,u 2 subject to A(m)u − q = 0, min ϕ =

!"

  Q    #          $       R(m)          β > 0                $      %           ·        &    '           

      

ρ(|∇m|) + α ˆ(m − mref )

R(m) = Ω

("

  αˆ           "   mref                " ) #               ρ      

   *  ( •       &     1 2 τ , 2 R (m) ← div ∇m. ρ(τ ) =



+            

       

       &    

          



R (m) ← div a∇m       



a

           

ρ(τ ) = τ, R (m) ← div ( •

  

∇m ) |∇m|

             !"#$ %



τ, τ ≥ γ, τ 2 /(2γ) + γ/2, τ < γ   1 1 R (m) ← div min{ , } ∇m γ |∇m| ρ(τ ) =

&   



ρ

   '      ( )

 (#      *  (#    + '     ,

     "#$              

β

# -        (     (#  

*

 





    . ,     # .    / '0

1  

 ( '       

    , (.   

 2# 3    '    ((   '       ' (   (    )   

 *

 (  456  ,

( # ,   (   (     7

      

  

    # +  (      * . #'  '    

   + 

u

 

, (#   , #     

                 )  (# 

min ϕ(m) = m



  

1 QA(m)−1 q − b2 + βR(m). 2      

8

   

     ( )  (#  9,    : 9,     , . ,  -       (  +     '  



(J T J + βR ) δm = −p



    

   p     J  R          m        m ← m + α˜ δm    

  0 < α˜ ≤ 1    J                                                Hred = J T J + βR                                            

             

                  !"#          L(m, u, λ) =

1 Qu − b2 + βR(m) + λT (A(m)u − q) 2

 λ   !           u#               ! 

#          

         $  Lλ = Au − q = 0, Lu = QT (Qu − b) + AT λ = 0, Lm = βR (m) + GT λ = 0;

where G =

∂A(m)u . ∂m

!%# !%# !%#

&       !%#        G    '        !%#          &  (  !  &   )*+ ,

&  -     ./01# 2 ,

&     



⎞⎛ ⎞ ⎛ ⎞ A 0 G δu Lλ ⎝QT Q AT 0 ⎠ ⎝ δλ ⎠ = − ⎝ Lu ⎠ . Lm 0 GT βR δm

!3#

 !3#      $                  4            55              !#                   '    β                

   !  β        # 2            !3#     $                      (u, λ, m)              6

          



                                               ! "    #   #$     %         &          λ '     #   (   )*+    ! ,             "           (              --   

  

 .    δu       #   %/' %          #'    δλ      #   %/' %        $        #'  #   δm        Hred δm ≡ (J T J + βR ) δm = −p

%0'

J = −QA−1 G

% *'

 

        "       !                            "  %0'    1    $     % )+'    $       M −1 (J T J + βR )δm = −M −1 p,   M         M = R  "  $      2         !-      Hred      Hred v      v  ! 33 4    Jv  J T v  ,       # G  Q     $        A−1  % *'   "      $   #  #              "   %0'                    ,      5     ) 6   6 7+

               "       - ( ,           #                    8  #      "     #           "     !-&     9   )*+

    

                                                                                                            δu δλ  δm                                        !    "#$            "#$                                      %&     '   

    ( ) β                   "#$   * +,-.      /)0     

!                         1                      2 3      

      4    +5 -. *   '               * +6.                                           ,     !      )' 7  8 -         7 (          /)0                     



                      7   ∇m     !  R   m(x) = ln σ(x).

       9          σ                          '     

           7   R

           "#$    

           ∇ × E + αµH = sH



in Ω,

∇× H−σ ˆ E = sE in Ω, n × H = 0 on ∂Ω,

 σˆ = σ + α  α = −ıω     µ(x)                        σ(x)                 0 ≤   1        ω  ∇×        

    !   "           #  $       %    & E = A + ∇ϕ div A = 0.

& A      '      (&  ∇ϕ         )&   *     "+     %,-  ./!   $&      

∇ × (µ−1 ∇ × A) − ∇(µ−1 div A) + α σ (A + ∇ϕ) = αs div σ (A + ∇ϕ) = div s.

, σ = σ > 0     

 &  

             



−(∇ × A) × n = 0, ∂Ω

∂ϕ



A · n =

= 0, ∂n ∂Ω ∂Ω  ϕdV = 0. Ω

0 1!   2 '       $            & 1!    

 $  ,  1               Lµ + αMσb αMσb ∇h A αs = ∇h · Mσb ∇h · Mσb ∇h ϕ ∇h · s

     3   &        Ak (m)uk       

= qk 



⎜ ⎜ ⎜ A(m)u = ⎜ ⎜ ⎜ ⎝

A1 (m) A2 (m)





⎞⎛ ⎞ ⎛ ⎞ u1 q1 ⎟ ⎜u2 ⎟ ⎜q2 ⎟ ⎟⎜ ⎟ ⎜ ⎟ ⎟ ⎜  ⎟ ⎜  ⎟ ⎟ ⎜  ⎟ = ⎜  ⎟ = q. ⎟⎜ ⎟ ⎜ ⎟ ⎟⎜  ⎟ ⎜  ⎟ ⎠ ⎝  ⎠ ⎝  ⎠ As (m) us qs





    

             A, ∇ϕ  s          E ϕ  div A         m σ ˆ    !           µ    !            H

                       

  

            



  !  " #  $#  %% %      &

% ' % 

   (   )   ) (     )       * %    ) %         %      

5         16, 64  512 Hz  28      50m  

 %  11   ) %      100m %        308      4620    % +  , % )           %        +   ,# )% %  

2%      2    % 3350m × 3000m × 2000m       '   64 × 50 × 30 = 96, 000

%      -   # %

        

β

β

   # )%  )  

) %   

     %       

 .   ) / 

        % +  ,  

 %      

b/b# # %   l2

Qu−

  %     %     %

     00      %  %  1 %  

          )  %) 2   3#  )% % )

      4

          



            β = 100     0.06     !  ||Au − q||/||q|| "#  $ % 3e − 2 #$  % 2e − 4 #   2e − 6 #% β = 1e0     0.03     !  ||Au − q||/||q|| "#  $ & 1e − 6 #  ' 8e − 7 (#%

   !   Ex , Hy     $ )*   +    ,  + !           +     +      + ,     ,     !                -$  ,  ..

      

             ∂H = 0 in Ω, ∂t ∂E = sr (t) in Ω, ∇ × H − σE −  ∂t n × H = 0 on ∂Ω.

∇× E+µ



    

                                                                              

             !        "             #       $       % 

       αn = (tn − tn−1 )−1 σ ˆn = σ + αn  ∇ × En + αn µHn = αn Hn−1 ≡ sH ˆn En = snr − αn En−1 ≡ sE ∇ × Hn − σ

in Ω in Ω

n × Hn = 0 on ∂Ω.

&                  $

  '         (   ⎛

Lµ + αn Mσb αn Mσb ∇h ⎝ ∇h · Mσb ∇h · Mσb ∇h −1 0 α−1 n Mµ ∇h ×

⎞⎛ ⎞ ⎛ ⎞ 0 An αn s 0⎠ ⎝ ϕn ⎠ = ⎝∇h · s⎠ . I Hn Hn−1

  n        Bn un−1 + An (m)un = qn  '     s     ⎞⎛



A1 (m) ⎜ B2 A2 (m) ⎜ ⎜  A(m)u = ⎜ ⎜ ⎜ ⎝

 

⎞ ⎛ ⎞ u1 q1 ⎟ ⎜u2 ⎟ ⎜q2 ⎟ ⎟⎜ ⎟ ⎜ ⎟ ⎟ ⎜  ⎟ ⎜  ⎟ ⎟ ⎜  ⎟ = ⎜  ⎟ = q. ⎟⎜ ⎟ ⎜ ⎟ ⎟⎜  ⎟ ⎜  ⎟  ⎠ ⎝  ⎠ ⎝  ⎠ Bs As (m) us qs

)*

          

      +),- $  

50m × 50m "    .   /   $  20      4         18      

   10−4 − 10−1 sec ' 0  1        15m        '       32  $      10−7 − 10−1 sec '        40 × 40 × 32 '          $    

    2       '  *            '                   33'         

          



             β = 1e − 1     0.1       ||Au − q||/||q||    !  3e − 3 !    2e − 4 "    7e − 6 !  "  9e − 7  " β = 1e − 2     0.04       ||Au − q||/||q||    !  4e − 6    # 6e − 7  " β = 1e − 3     0.02       ||Au − q||/||q||    ! $ 2e − 6     8e − 7 % "       

                                                                                  !      



R(m) = Ω

 ρ(|∇m|) + α ˆ(m − mref )

h

     h                    "                        #  

  $                 R(m)       %       u = m                     &'( ')* +                      

           ,   • % |∇m| → ∞ |∇m|      |∇m|2   . 

   /    /            • % | grad m| → 0 |∇m|       "            |∇m|2  



    

    

                  

τ, τ ≥ γ, 2 τ /(2γ) + γ/2, τ < γ   1 1  } ∇m . R (m) ← div min{ , γ |∇m| ρ(τ ) =



!    "#  $  %          "   &                       ' (         "    )       &    *  |∇m|h = (D+,x m)2 + (D+,y m)2  |∇m|h =

 (D+,x m)2 + (D+,y m)2 + ,

  "  0 <   1     |∇m|−1 h      ' ! ' ' + ' ,&               #- &                .  ' /  "&                  *    "  γ ""   ' ,  γ   "      .    $   0 "%1

''   2   * &     |∇m|       

   "        m    &     '   "    ""   ' (    & γ &   "   &  

3   |∇m|   0 "   

   &     "   ' /  &   &      "   &  " ' /  γ=

h |Ω|h





 |∇m| . h

4

  γ "           0       

      &  ' 5     "    2"  &      

    & |∇m|6     &   ' (    "      &    "  *               ' '   7   &     #  

 '        2 &        

    2     "2  2   & "    "   ' 8     .    &      "" 9  R        3 )' ,&   QA(m)−1 q = m 

               

    

  

R δm ≈ div



       

  1 1 } ∇δm , min{ , γ |∇m|



   

                             !"      #               $  %&'(      γ   )                  *        +*                  &         #          ,    -        #           

  .       / R    #   '  0 0          

             1                                "234     %&( ,                                     /        

-        56 4          7 8 9        /        6        2+3             :  ;              <         0

/       /  =   >   

    -            %?(            -     m  /            +     )

    )        5 @                      ,      

           

        2D  Ω = [−1, 1]2      

              -         div (m−1 ∇u) = q,

              σ  m      0      

         u      0                   )



    

                   !     "! #  ! $%& q = exp(−10((x + 0.6)2 + (y + 0.6)2 )) − exp(−10((x − 0.6)2 + (y − 0.6)2 )),

                        129 × 129           1%           b                          !       m−1 "              #            !  $%&'" (                   )         !           "      *          m 

    +     ,                        -          +    &          .   β = 10−5  )     1.66 × 10−2            

1%   β  β = 3 × 10−6  /         1.50 × 10−2  0 β  10−6               β         1         23    β = 10−5     γ = 4.6   1.01 × 10−2      4

          



                             

  !      "  # β = 10−5        

         $    %



    

             β = 3 × 10−6              !  " !#$

         %    β = 10−5      

       &  " !'(

          



                              

     

                  

                                        

   !"#

                     !                "    # $    ! 

%       1%  1.5%                 " #   " #          !     &  "    #   $        &             

   

  !         '      ( $  !     !              

   !                    !        

          )       &         *        

  !    [mmin , mmax ] 

   5 +     !       m                      



    

  

 

       

     

                    5  !    !    "         #$           

  

                    



 

2.2 × 10−2       

            

    !        

 

 "       #         

              "   $ %                    &     ' 

                 

#         $              

     (      )  *

               

       &  

    

 + , - .  / ) 

0          

      

   

121 345 655 

          



                 

        

 

   

!   " # $% &'     !($

   )   * ,   

       +++

   

!        %%- & 

         '    .# *

   "    +++ 3   



/ & $0 1   2

    !   4   $" # $% &'$5  $

   !($   )  !  ***

   

0 4    6  

&   7 !       &

      ++0

$  

8 - 9 7     ! /       $        '   $      

   :+0,;+88 +++

        !

<  6 ( ' & -  $' #     =   &

+

    3:3;3 +<+ > #  ? @ # #         

 "

5*/

!   +<  7 9 A  (

  

" $  '     

     B     

$#%  &

,:;

8 ++<  5  )  ! ) > ' ) /  )   A

*     # ' (   ) *& + ++<           #              B  # &  



!(    ' &    7  ++8        9  B  '    (    $     # &     C 

 & :+,;+0 

,      

 &   &

!   $ $       

         

     8:<,8;<0,

 3        (    (  (          

  

9   

&  & #% & 0:3;8

 0        (

   * '   (     

   A &       D  $ $      /   8 ! 6  

>         

 & 3:8; +0,

<  " # (  

- $     ' &   

      '  ;   & <:,3;3, ++8

 & #&

$#%  ,      



    

            

        

 !     "

     

    

  

#$%&''&() )

#* +   , - 

    

# 0 1 2 / 2  + ## . ,



  ./% , 



2  3  2

4

       

 2-, 2 

5   ( #&  ,  5  

          ! " 

#4  , / 3 

   !     

/ 6       !   

" $  $ %&"#'

4%#&'

#' 5 ,  7 89: !     ; ##%##$

     5   

  $  !   !

$4 ,          

#(  /  8.      + - , 

< 

   ! 

(  )(

))

#) 3   5 =  , #** #$ 5 8 

 ! 

    2

#        ) 

#**#

#$

'







#**

 ,<>

2 

        

               1  1    1  2    2   2 1

                

!"#$%   & 

    

2

'     ( )'(* +!,!- .

!/$"

    



  & 

 

  0    

        1

     - 2     

  

              - 3      4           4    

          --    5 !                                ,         '     ( )'(*               - (

l1

4         6                

         7 8   - '       9       !       : l1  1   2             0    '(; ( -

         

                !      "  # "  $ %&  '    "  $   ()  )**( + ,  $ -      $    "   +      (.***      /0*** 1 2(*3 4      "     "     "                "    



               

       

    

        

             

  

         

      

         

                    

               

                 

     !        

                    "  

                  

             

             

      #     #   

     "   

    $    

   v(t) r(t) ˙ y(t) ˙ = = ⊕ − GM v(t) ˙ r3 r(t) +  (r(t), v(t), t)   y(t0 ) = y0 = r0 v0 = p. 

%

y(t)

!

         &              

       

    

       

(r(t), v(t), t)



p

      '

     

  #           

  

  (                ) 

  *         )      '    +                    +        

p

     

                  

    

      +       

  

p

bj , j = 1, ..., mi ,

ti , i = 1, ..., k,    ηij  mi '        y(t)     

  

ηij = bj (y(ti ), ptrue ) + εij ,

j = 1, ..., mi ,

        

        

εij 

i = 1, ..., k,

        

      )  

   *            

bj (y(t), p)

      



    

            

                                                                                                    

                (N (0, σij2 ))              min



2 (ηij − bj (y(ti ), p))2 /σij

i,j

  !        "     #    l1

  

   $ min



|ηij − bj (y(ti ), p)|/|σij |

i,j

%     &   l1           

                  

   l1                '()

   

                        

% *                          +                 ,              

 l1             l1              

-     l1             &           $ -            b(y(t), p)       η               $



               

min y,p



mj l   j=1 i=1

y(t) ˙ =

|ηij − bj (y(ti ), p)|/|σij |



r(t) ˙ v(t) ˙





 =



v(t) ⊕ − GM r3 r(t) +

(r(t), v(t), t)

:= f (t, y(t), p)

y(t0 ) = p.

                                                                                          !                          "  #  $

"#$    

   %& '               (                    

                             )        

          !     % *&   "#$                    +                     

    '              ,               τj

t0 = τ0 < τ1 < . . . < τm = tl           

y(t;s0,p) ▼

s0 ❋

τ0=t0

h0

s2 ❋

h1

s3 ❋

τ1

h2 hm−2

s1❋



s m−1

τ2

τ3

τm−1

sm❋ hm−1 ●

y(τ m; sm−1, p)

τm=tl

      

      



           sj              m       y˙ = f (t, y, p),

y(τj ) = sj

        Ij := [τj , τj+1 ]      y(t; sj , p)   t ∈ Ij                        τj                          y(t, sj , p), τj ≤ t ≤ τj+1 ,  

  !"      #      (s, p) := (s0 , . . . , sm , p)

$"

min ||r0 (s, p)||1 , (s,p)

hj (sj , sj+1 , p) := y(τj+1 ; sj , p) − sj+1 = 0, j = 1, ..., m − 1, s0 = p.

%                                

  $"     #      s         &    '          ( )                            *                      sj               y(t; sj , p)                    +      !   &              

   ,-             &  "                  $                                            .            / 012       &     *       #   l1    

2#   012       /             

 *   $"        min ||F1 (x)||1 =

m1  i=1

|F1i (x)|, s.t. F2 (x) = 0.

."



               

      F2 (x) = 0                           Fi : D ⊂ Rn → Rm , i = 1, 2  

                                                                      !   

   

    

     xk+1 = xk + tk ∆xk , 0 < tk ≤ 1. "     ∆x           l1    i

x = xk

min n ||F1 (x) + J1 (x)∆x||1 =

∆x∈R

m1 

|F1i (x) + J1i (x)∆x|,

#

i=1

 F2 (x) + J2 (x)∆x = 0. $ J1 (x)   J2 (x)    %    F1 (x)   F2 (x)      J1i    i−    J1 (x) &      tk    

         '        T1 (x) := ||F1 (x)||1 +

m2 

αi |F2i (x)|

i=1

  (       αi > 0 i = 1, ..., m2 ,        $   )        !                 (                  * 

   

  +  ,-. ,.           

 

          !   " / #   !    0   1  2  3 012     

     !     4 012       !        5        $                       !       6                 

              

   !          !                 # 

       !       !               !        0          l2    !                   ,-.         6  072!         l1 '                         $               

      



                            l1                                              tk ≡ 1      !        "             

   l1    #              l1  $    

  

   J(x) =



J1 (x) J2 (x)

   l1       

   "      %&'    (         

  )

⎞ D10 D11 . . . . . . D1m ⎟ ⎜ Gl0 Gr0 ⎟ ⎜ ⎟ ⎜  l  ⎟ ⎜ G1 0 ⎟ J(x) = ⎜ ⎟ ⎜   ⎟ ⎜   ⎟ ⎜ ⎠ ⎝ 0 Glm−1 Grm−1 ⎛

*  "                    (           "                     "    +              F1 (x)             ,      -               ./0 .10        l1        l1                    

                2  3   4                            5+*                    3        $

         6        

                 M1 

min f (Y ) =

|ATi Y + ci |,



i=1

ATi Y + ci = 0, i = M1 + 1, ..., M1 + M2      

m1

M1

             

 

           

                   l1                      M1      2 × M1     

     

min fLP (Y ) =

M1 



ξi ,

i=1



ξi − ATi Y ≥ ci , i = 1, ..., M1 , ξi + ATi Y ≥ −ci , i = 1, ..., M1 , ATi Y + ci = 0, i = M1 + 1, ..., M1 + M2 , ξ ≥ 0,

       

        !  

   "             

 # 

               $  %               

ϕ(λ) = cT λ,

min

λ∈ RM1 +M2

&

Aλ = 0, |λi | ≤ 1, i = 1, ..., M1 .



 '         "       $ %    

 ()  '         

 

                 #       

A 

       '    

                        *    

min f (Y ) =

M1 

|ATi Y + ci |,

+,

i=1



ATi Y + ci = 0, i = M1 + 1, ..., M1 + M2 , L ≤ Y ≤ U,

      

L

 

U

  

Y

-    

    +,  .   $ %  (/)  "    

   #                        0                   .    

      



                                                                                                       !"#  !$     %#   $! &  '()      *+,&   l1        #            #         - *+,&-           .    *+,&-       ,   !"    # *+,&-         /         l2    l1       

                1 2 3 4 5 6 7 8 9 10  !"

-

/0

-/



-

-1









(

2

2

3

2

-

-

4

-/

4

*+,&-

  l2   l1    p1 [km] l2  l1 

p2 [km]

p3 [km] p4 [km/s] p5 [km/s] p6 [km/s]

0-1(- 4/0/0 /31-/

42(/13

/124  /23

0-1(( 4/0/2 /31 (

42(//3

/ 2  / 1

 1                

    

                        



               

                            l1  l2          

            !    "  #   $  %     &

'  () 

  *  + ,- ./++/0 /    1               23 (  . 0 # 

4  % '    )   )4 )  % 5      4 .,60 7    1                  !      #    )     .,680 9    1 ( :    ; 5 ) <   '   *  

&    

 % 4   =  *  #      "     #    "  $     %   # 5 

 .( 0 :  >89 ./+++0 > '    & # :

  (  :            4 l1 ?           "     "   $   76 , 9++  9 .,,60 - 5 ;       $ ;  @   )  .,60 8 (  :   

4             ?   3  ?  "   "   #    >> 7 ./++/0 6  #  1 ( 

 ) 

    )4    4 * A 1 ./+++0 , * &      #   # 1 /+  *  4       + ) B4   & / ./++/0

                     

                !"#$%               

      

 &               '       (    )    *  

                   '   +   , &*          - *                  +    -   '.  , (                  (  )      *              )         *(  ,        

)   *      /       , &                   ) 

  ,  -    *         ,                 

 '"     

                                                       !"    # !   $%& ' %()     #          *    !   $+ , %% %')     #                            - .           -  /                 -           0     "  -



      

                                                                                                         

                                                                                                !                                                         "      

           #       #                               $  %#                    & '            (                    & )                                    $  *#    !   

                                        

+            S ⊂ Êd d = 2, 3      

  L       D := Êd\S      S  

                 

  C             VC    Ω          F      S    t      S(t)                 R(t) $        F            

 L             ρ ∂∂t + ρ( · ∇) = ρg + ∇ · T (, )  (x, t) ∈ [Êd \S(t)] × {t},  ∇·=0 t>0   ρ         L#        ,        

  

  L# T   -  

   ρg          

      !    + 

     . (&       -  

 

 

            T ( , ) := −1 + µ(∇ + (∇ )T ),

 

 µ   

           (x, 0) = 0,

lim

|x|→∞

(x, t) = 0

 x ∈ Êd \S(t)

(x, t) = VC (t) + Ω(t) × (x − xC (t))  x ∈ ∂S(t).

 

     

                                                !  ˙ mS VC = mS g − T ( , ) · N dσ, ∂S(t)  ⎪ d(J ·Ω) ⎪ ⎩ S(t) =− (x − xC ) × [T ( , ) · N ] dσ, dt ⎧ ⎪ ⎪ ⎨

"

∂S(t)

 mS  

  # N      ∂S(t)         JS             

  C  $  

 VC (0) = 0# Ω(0) = 0        %&"           

       L          &             R   y         P     R   x          F #    x = Q(t) · y + xC (t), Q(0) = 1, xC (0) = 0, '   (            )        '            %       ρ{ ∂v ∂t + ((v − V ) · ∇)v + ω × v} = ∇ · T (v, p) + ρG(t) ∇·v =0

*

 (y, t) ∈ [Êd \S(0)] × (0, ∞)#  v(y, t) := QT · (Q · y + xC , t), p(y, t) := (Q · y + xC , t), G := QT · g + V (y, t) := QT (VC +Ω×(Q·y)), T (v, p) := QT ·T (Q·v, p)·Q, ω := QT ·Ω. ,

     ω × v        (*)1                 ' )   

     " 

              ⎧  ⎪ ˙ ⎪ m V + m (ω × V ) = m G(t) − T (v, p) · n dσ, ⎪ S C S C S ⎪ ⎪ ∂S ⎨  IS · ω˙ + ω × (IS · ω) = − y × [T (v, p) · n] dσ, ⎪ ⎪ ⎪ ∂S ⎪ ⎪ ⎩ dG dt = G × ω,

%-



      

 VC := QT · VC , n := QT · N, IS := QT · JS · Q, ∂S := ∂S(0).

    

                  d = 2   ω := (0, 0, ω)     y × [T · n] = (0, 0, −y2 (T · n)1 + y1 (T · n)2 )  d = 2    ()2              R            G       t              

                                 !                   "# "  $%&            

   S              

     VC  ω           L         R(t)      '                     

           (                                 $%&                   v  p VC  ω  G      )

  *            ( ρ{((v − V ) · ∇)v + ω × v} = ∇ · T (v, p) + ρG ∇·v =0





Êd \S], 

y∈[

+

lim v(y) = 0

|y|→∞

v(y) = V (y) := VC + ω × y  y ∈ ∂S  mS (ω × VC ) = ms G − T (v, p) · n dσ, ∂S  ω × (IS · ω) = − y × [T (v, p) · n] dσ,

, -

% G × ω = 0. !       !   .        

 '       $/&     .               ω = 0 0    !  '        d = 3     G

   ω              ∂S

           



   d = 3  ρ T = T (v, p) |G| = |g| IS mS   G = |g||ω|−1 ω  ω = 0      

v p VC ω G

        

   Ω ⊂ Êd  L2 (Ω)                  Ω          

(f, g)Ω :=

 1 ||f ||Ω := ( |f |2 dx) 2 .

f g dx, Ω



! L2 (∂Ω)                     ! ∂Ω  " L2       #        

     L2(Ω)   $   H 1    1 1 H0 = v ∈ H (Ω), v|∂Ω = 0 

      "  %                        &                ω = 0         " %!           %                !         '     !  !         !     %       (  "      !       )    *   !  +   1 H1 (D) := (v, V, ω) : v ∈ [Hloc (D)]d , V ∈ Êd , ω ∈ Êd , v = V + ω × y  ∂S ,  D := Êd\S  "  p                   

L20 (D) :=



q ∈ L2 (D) :

q=0 . D

-

D ⊂ D     u := {(v, VC , ω), p} ∈ H1 (D) × L20 (D) ϕ := {(ϕ, ϕ1 , ϕ2 ), q} ∈ H1 (D) × L20 (D)         





A1 (u; ϕ) := ρ(((v − (VC + ω × y)) · ∇)v, ϕ)D + (ω × v, ϕ)D  −(p, ∇ · ϕ)D + 2µ D(v) : D(ϕ) − (ρ|g||ω|−1 ω, ϕ)D D −1

−ϕ1 · [mS (|g||ω|

ω − ω × VC )] + ϕ2 · [ω × (IS · ω)] −(∇ · v, q)D ,

.



      

             ϕ ∈ H1 (D) ×    

           

    ()1  D(v)         D(v) := 12 (∇v + (∇v)T )                  u := {(v, VC , ω), p} ∈ H1 (D) × L20 (D)   A1 (u; ϕ) = 0 ∀ϕ ∈ H1 (D) × L20 (D). !" #                                !"  

   {(0, ϕ1 , 0), 0}   {(0, 0, ϕ2), 0}   #        !"       

        

   $  %                  

       

&'( !) L20 (D)

      

  (     D := Êd\S *    L        Ω ⊂ Êd\S  +  *   ∂Ω\∂S

    ,      ( v(y) = 0  y ∈ ∂Ω\∂S. -          *                 . (    Ω 

             &!( /) #  .      *      W1h ⊂ H1 (Ω) × 2 L0 (Ω) *     Th = {K}         $    K     Ω 0       {Th }h        h → 0         W1h ⊂ H1 (Ω) × L20 (Ω)       1 #  *     &")     W1h := ((v, V, ω), p) ∈ [C(Ω)]d ×

Êd × Êd × C(Ω),

 v|K ∈ [Q2 ]d , p|K ∈ Q1 , v|∂S = V + ω × y ,

  Qr             



r             

  &2) #               

   

   $            

       *   

&)           3            

    (     .   

  (          *      (        *   .               

           



                                  

            

   uh := W1h   



A1 (uh ; ϕh ) = 0 ∀ϕh ∈ W1h .

                                    S                                       

        ! "   #$% !                       !

                  &      '                  u := {(v, VC , ω), p} ∈ H1 (D) × L20 (D)         

[T (v, p) · n] · ψ dσ,

Jψ (u) :=



∂S

  ψ := ψ1 + ψ2 × y ∈ Ê3  ψ1 , ψ2 ∈ Ê3    ψ = ψ1   ψ = ψ2 × y      Jψ (u)               

         

Jψ1 (u) = ψ1 · Jψ2 ×y (u) = ψ2 ·

[T (v, p) · n] dσ



y × [T (v, p) · n] dσ.

(

∂S ∂S

)         &  A(u; ϕ) := ρ(((v − (VC + ω × y)) · ∇)v, ϕ)D + (ω × v, ϕ)D  −(p, ∇ · ϕ)D + 2µ D(v) : D(ϕ) D

*

−(ρ|g||ω|−1 ω, ϕ)D − (∇ · v, q)D ,

           ϕ1  ϕ2        &   A1 (u; ϕ)             H1ψ (D) := H1 (D) ∩ {(v, V, ω) : ∇ · v = 0  Ω, V = ψ1 , ω = ψ2 } .

        #,%-

+



      

                u        Jψ (u) = A(u; w) ∀w ∈ H1ψ (D) × L20 (D).        H1ψ (D) × L20 (D)   W1ψ,h := W1h ∩ {((v, V, ω), p) : V = ψ1 , ω = ψ2 } .

 uh ∈ W1h                      J˜ψ (uh ) := A(uh ; w) ∀w ∈ W1ψ,h , 

    A(uh ; w)          ψ  w !          "  J˜ψ (uh ) = Jψ (uh ).

#   $%&     J˜ψ (uh )&   Jψ (uh )      '    Jψ (u) (   &         

   Jψ (uh ) − J˜ψ (uh ) !       

       

 Jψ (uh ) − J˜ψ (uh) &     "      )      (  z := (z v , z V , z ω ), z p ∈ H1ψ (D) × L20(D)    L(u, uh; z, ϕ) = 0 ∀ϕ ∈ H1ψ=0 (D) × L20 (D). * + & L(u, uh; z, ϕ)            z  ϕ        "    L(u, uh ; z, u − uh ) = A(u; z) − A(uh , z) ∀z ∈ H1 (D) × L20 (D), ,-    u    uh                .              A(·; ·)& L(u, uh; ·, ·)    '    $*%       / "                   

      Jψ (uh ) − J˜ψ (uh )      z         0    Π : H1ψ (D) × L20 (D) → W1ψ,h            Jψ (uh ) − J˜ψ (uh ) = A(uh , z − Πz). ,  1 $*%   !  

     ,                        "                        " ψ1  ψ2      ψ = ψ1 + ψ2 × y    &         z   ψ '    "      .

       z v |∂S = ψ C

               



   

       l = 6.10 m   L = 1.10                   µ = 0.1  ρ = 1        

             

          

       

       

                ∂Ω\∂S       Ω  !"                                    #

  $      

                    %             &        −2

−2

             ν = 0.1                              D = 800       ! "        #      ! $!    %&!



      



                                            

!  " #$ 

  ( )  *$  % 0 ! 1  % 2 , , 3    4 

 

 ! %

&  '

+     ,' - ,./

    

   2    ' % 2'5$ 6  //7

7 -  88  -   %& ( 2  '   '+ &   

                         !!   9:,;<.9./ //

. =" =  



 % ( >     - 

>   -    ?   @  @!   A =" =      &  +     & (  ( &  %   5 ! ' B

 " 



  $          

 ,<9, 

C > = > 4   > 4!   @ D  !      (      )   (   ( 2 E   !'   *$

+     5'/CFA G)( 0 ! & 3  2

4 %  & //C 9  =$  +# "  +   ?? H  H "  )  '  %

 4 2 2   F

     ( *$ 

! 2 2 % <     

 "

  *$



   

 ,<7,AA ///

/   5

!      

   

 

+   & (  (   %   <

 2 !    

 "  3 + &        

 ! !  

 (   ! ' B

 2        B 

# !  "



?     ( *$ (  'B

! "

  

 ?? H  >H 3  

Ú !I

!

 *

 

38 

 ,<9.,A //

&    (    & (  ( % &  +     7/F  & (   (  

% >         

!  !! 

*   !B



)   %

3

   (  '*

 *$

 A
A " #$  G    B

 

 7:;
. G 0 !  = + &22!  

%  $

 

?     ( * 

  # ! " $ 

7 ?   3  %  J ) 



 <,,.,. //A

    ,  5

 )

'

 
/C,   



 



 (   & 

#   % 

  (   5 ! '

 A<7..7C7 

                                  

              !"      #       

           $     %& '()' & )  *   +  ' )    %& '   *    

 ,+      &    +    )-   &) '     &   . '  *           &

    &)   ++ + +     ()' ++   &)       '     +     /  +     )-   '      &       ) ,+ ' )     +  '    )&   0 + +    +  +  +   )  *   ' '   ' +     )      )  +   +   '    '  '   +    '     .  . '  +  '         +  '     *  $ +     +  '     '   1 + +   + +'    +  '  '     

 

                                   !

   " !            #                  $  %      #                   $              "                             &                  ' "            &  (     )                             

   *                  +,  -       .    !  /  )          +-    /  + 



           

                                      !        "         #   $           %       &'       #           "         &' ' !                  # "              "'

   ( )* (+,- +.- +/0-*         &   1 #              "     $    $    $               & "                '  !       $     '  2 !      !  3 4  ' '    &         '  2 !      !    '  (+/- +5- +/6-* 7                        8         '      ( +9-*  "'     '                         $                  $  '              "' )          $    '  "    '                         '            '    '                  !   (!* $  &   '                         '            34:          ) ( +;-*     8     5  8            <    $    '              !     ;       '         $    : '   ,              

             $       ( *   $       $   

       



         

      

  

     

    

            

                  

                        

                        

                         

                                 ! 

   "          ! !      #  $                

 # %      

   

     & 

     '    ( 

 ) ) ))  ) ) )) 

      %      

    

 

    

         

       

       "    



       



         "                  

                 *       *              "  

   

                   t1

 t2   t2     t1    +  x    t2 #        

+  x    t1 # ,   t1 ≤ι t2      t2     t1           ≤ι  -  

     

                                      

   !"   !" ≤ι                     '

      '              ' i  ≤ι i

      '       



           

   

                                                        (t1 , m1 )                 (t2 , m2 )          t2 ≤ι t1  m2 ≤ι m1     t1                  t2           t2 ≤ι t1                                 r2   t2    n      r1   t1          i  1  n      

  r2      i           

  r1      i           G  H 

    

                !          G H  F   G     H  H     F   G     F      

      "                "  G     H   H  !

       G #     G      H   H   G $                     !                                                " %&'(                        

     

                     )        ") *"              ") %&+(    ,       

       



                

                                        

                            

    ! "# $    %  &   &                        %             '    

         & & (   & 

       )     &      &   *            + , %       &     &       -  )       -             &       

 &    )             *    )        '     % &  %         &    . #  " ""        

     / 0    & +            &              &      0      &    %  & 1   23   "" 4 %      *                 

+   

    &             5      *         6  

 5             

   &         &  &              &  

       & 6  5       *         &   &%    7                  

 8     9  %   

     )          " 0       5           )        :          &   &   )  !                    &  ""      %         & 

         

   



           

                                                                                                            !           "                                 

                 # $              

        

%            &'                                             & 

      (                                                    $ )

     * "++ 

 ,  + !                                &'    - .  / 0     !11                   ,         &'    % $- ,                                &                   1        *  2 3                                             4                                   

 '   

                               '     

   

                            

  )                  & 5                

$-"

       

    



    

                                                                            

           

             

                

    

  

                    

              !  

       

     

          

    "  # 

                          $    %     

&   '   (              

     '     )                 '  **    

    "  %    #         ! "##  $  

  

+    ,                            %                 

  

        

         $  

! "##

     

               

     

               

 % &&  &       $  

  '&   &       $  

! "## ! "##

                   

               

  

    



   

     &     '&     (  



           





          

    

  

       

        ! " 

                                                !              "#$$ % &  "   '  &    

 (  )                                  !       !                             *     !  +    ,   )   

                (  )          !          !                      '     !                                           '       !                                                               %            -                           )     (  )       !  )   !                              '         (  )  

,                   !            !     '  !                                   %  !                   )  %       $    !  )    ) !               )    -    !  .  %              !       /           0123                      -   !      !    /           0453                  

    !           !          

   

       



            

  

                          !  "! #$%&'() *               ) +                      ) *                    )



$,' - . ) /&0123&,3" .4- 5  - #,33&() $%' - . ) /&*%23,3%       

  #,33() $&' 67   .)  .   )8     .  )   +  #,333() $1'  9 *)8 5  :   -  + ) ;  #%,() $' 5 *)0)8 ; 66 5  : 8  9   5

  

  0  <   . ) 8 -= >)  ) # )(8 * -       5

   ) >  ? #%( ,,1,%) $"' 5 *)0)8 ; 66 5  :   -  + )    

 =      - 5

    +=   ; 66 9     #%,() $@' 5 )  )9)8 5  :    : ) .  . ) 3& 9   A    .       B      #,33() $C' ;D 69E6 )8 F           F   )  >    G5A33 +=   F   > -    8 9  9  ;

 * ) 5   #,333() $3' ;D 69E6 ) :E6>E6 ) G   )8   8  F    F  <)  >    A3@ +=   F  < - -   -   -   H- #,33@() $,' :E6>B6 ) ;D 6 )  ?  )G)8 *     5 6 4 F  )  >    <5A3" +=   F  < #,33"( 1,,) $,,' :I ) ; )-)8      4   <     F  )  >    G5A3 +=     F      J  -   5  #,33() $,%' G  4) 5 *) ?  >)8     F  4  )  >   *KJF+- 5   ,  ;> + 5

 5 ) 50 #,33C( %&)

                             

 !

       "   #$$$%

&    '  ( ) * +,-.  " - )/ 0- 1



 2   3 #$$4% 546&&

4    ' "

   " - )-

: ;   2.

 7   8  96

#$$5% <46&=<

< 8> 7 8    9-        96 :  0-  , 

 1

 8

 ? :>

@ 2 #$$3% 3 8 )  7 ( >     ,>     7(,;$! 1  > #$$!% ! , / 7  " - , 6             2 6>  $ , / 7  " - )   1-

  "- > #$!&%

  - 2 8  , 6

  ">  # % " - , , 6

    ' 8  2.    A <&= ,- 6A #$$$% 6<4 5= , / 7    9-   ' -  7   @ " 

-

5 ?    @  (    ? .     

 <

2  "    

   "6

  " #5===%

 @

>  6

"- ,>

,- )-  0- ,> #$$<% 55 ?   B )C     (   -  -       9: 5 A  D B E> 9

 #$$<%

   2-6

1 8  2 " - 1>- 0  2

- @  1

 E "

 

"> ? :>  1 6

> #5==% 5& F

  ' B G G  '    )  ")   ,-.

,      E , , ) # % " - , @   

 @ ' 8  2.    A 55=

,- 6A #5==% &&643

       

       





           

                     1    2 1

                 

2



   



           !" 

    

 

                                                        !    "   #  $%%&' $(&)        *    '                   !     N −1/2          N −1       '  N               '     *        '   *    +   *           *   !       *             *   *     ,    -  .                              / * 0  *  $1&  $%2&            *     #  $%%&' $(&)        3456" $%1& 7    *                     *                     

# 

    $  %&     *+++!""

  "'"  $  ()



  

              µ                             

 e−iωt         

∇ × E − iωµH = 0, ∇ × H + iωεE = 0.

 E  H                             !   ε(x), x = (x1 , x2 , x3 ) "      #      $  #                   x2      "      !   ε(x) = ε(x1 , x3 )    x1         L > 0 ε(x1 + nL, x3 ) = ε(x1 , x3 ) ∀ x1 , x3 ∈

Ê,

n   .

    !   ε(x)     "  ε(x) ≥ 0  ε(x) > 0   ε(x) = 0 %        ε          {(x1 , x3 ) : b2 < x3 < b1 }  

             ε1  ε2     ε(x1 , x3 ) = ε1 Ω1 = {(x1 , x3 ) : x3 ≥ b1 }, ε(x1 , x3 ) = ε2 Ω2 = {(x1 , x3 ) : x3 ≤ b2 }.

%           ε1 > 0  ε2    

#          Ω2  $           &    

                #               &   '      (   &            &    %  (

     E      x2  ' E = (0, u, 0)T ∈ 3  u = u(x1 , x3 )     &   

Ê

∆u + k 2 (x)u = 0

Ê2.

)

 k 2 (x) = ω 2 ε(x)µ           *           H       x2  ' H = (0, u, 0)T ∈ 3  u = u(x1 , x3 )        '   1 2 ∇u + u = 0

div . + k 2 (x)

Ê

Ê

,     !        $  #      ( )    +   &    %      !    

                                 Ω         x1         #                       

        



                

                               

            

ε(x)

   

             

                   !    !  "               





    #    $

         %  # 

    

      

     &'(   )*              

   +         &'(       ,       

      

             $                 



   

      )-* .

          

                      &'(       $  &'(                '      

    #    

                   





    

  





   /   

  $ 

        

    $  &'(   

                      (

R2         u ∈ H01 (Ω)   

  

      



0   

    

 

A(u, v) = F (v) ∀v ∈ H01 (Ω),

1

F ∈ H −1 (Ω)    H01 (Ω)   A(u, v) = [p(x)∇u · ∇v + r(x)uv] dx ∀u, v ∈ H01 (Ω).





.   

p ∈ C 1 (Ω), r ∈ C 0 (Ω), p(x) > 0



Ω



'             

r(x) ≥ 0



  



Ω

Mj , 0 ≤ j ≤ J      Xj ⊂ H01 (Ω)      nj      

     /     (

    



     

Mj



 



                

      





  

Mj

 

    #    

   

j

 

   

              #     



  

         O(n2j )                                            !      "            !    !     !      "    # $  !        ! "     !    !    "     !            " %       !           &!      !   '  '   !                  (    )    "      !      !      *  !    "           '   '      "             + & !         ,  -     !    !   .    "   / 0   !    "                       ("   )      1        !    !       ! 2   !   3  ! '       $ ( )     !         !    !       !      !      " !  1  ! N   3 !    "   O(N )   4   Nj     !     ! Mj 5     z ∈ Nj  "      ϕzj           !  ! Xj " 6   1     z    0   !j    !    "   / 0      7 N   8   !j = z ∈ Nj : z   "    z ∈ Nj−1  ϕz = ϕz N  j j−1 .   xk !j = xk , k = 1, · · · , n 5     "    N ˜ j  ϕkj = ϕj j   j      !      xkj 5   0 ≤ j ≤ J  "  Aj : Xj → Xj  (Aj w, v) = A(w, v),

∀w, v ∈ Xj ,

"   (·, ·)       L2 (Ω) 9        &  Qj , Pj : XJ → Xj  (Qj w, v) = (w, v),

A(Pj w, v) = A(w, v),

∀v ∈ Xj , ∀w ∈ XJ .

        @  @  1 @  @ @ 

C @  C @  4 C4 @  @ 1 C 1 @ @ @ @C 

C @  C @ 2 C 3 @  @ C @ C 



C @ 2 C 3@  C @ C 3 2C 2 @ 3 C 2 C 3@ @C C @  CC @

                    

            AJ uJ     (m+1)

uJ

(m)

= uJ

= fJ

(m)

+ BJ (fJ − AJ uJ ).

  Bj : Xj → Xj , 0 ≤ j ≤ J      



    B0 = A−1 0 .  j > 0  g ∈ Xj    3

    v1 = Rj g  !  v2 = v1 + Bj−1 Qj−1 (g − Aj v1 ), "   v3 = v2 + Rjt (g − Aj v2 ).

Bj g = v

 Pjk : XJ → Xjk := span

 k ϕj

 

A(Pjk w, ϕkj ) = A(w, ϕkj ) ∀w ∈ XJ .

  Rj    # $  %            n ˜j " $ # Rj = I − (I − Pjk ) A−1 j . k=1

&  '  

 ( %  )       *             + , +-,  + ,  ( %  )       ./  0             %     .  %           %     / . / 

   ( )           %            1     0     

  2     

        

           

     +3,

 

   Mj , 0 ≤ j ≤ J   

                      K ∈



  

Mj

          

 



hK  ≤ ChK     Mj  J  

  

K  ∈ Mj−1         δ < 1   

I − BJ AJ A < δ.

                                       xkj ∈ N!j   ϕkj      !        Xj  Ejk         Mj            ϕkj   hkj           Mj     

xkj   !                    "          " J 

" $3/2 hli /hkj ≤C



  xkj ∈ N!j ,

i=j+1 xl ∈N ei ,xl ∈E k i

i−1 

i

j

"



hli /hkj

$1/2

≤C

  xli ∈ N!i.

j=1 xk ∈N ej ,xl ∈E k j

i

j

           # $        Πj : XJ → Xj J  

|(Πj v − Πj−1 v)(z)|2 ≤ CA(v, v)

∀v ∈ XJ .

j=1 z∈N ej

                           !         

     %  %       &          

'            ()* + uI = eiαx −iβx                       α = k1 sin θ, β = k1 cos θ  −π/2 < θ < π/2      ,      -       u      u  ()*   uα = ue−iαx      x1     L > 0 .   Γj = {(x1 , x3 ) : 0 < x1 < L, x3 = bj }, j = 1, 2 ,             Ω = {(x1 , x3 ) : 0 < x1 < L  b2 < x3 < b1 }. 1

1

3

       



             u             Ω1   Ω2        uI  Ω1       n  αn = 2πn/L      n ∈ Z   j = 1, 2    βjn

=

βjn (α)

  1/2 k 2 − (αn + α)2 = 1/2  j i (αn + α)2 − kj2

 

kj2 ≥ (αn + α)2 kj2 < (αn + α)2 .

   kj2 = (αn + α)2   n ∈ Z, j = 1, 2                 uI   Ω1           Ω1  u = uI +



!

n

An1 ei(αn +α)x1 +iβ1 x3 , x ∈ Ω1 .

n∈Z

"           Ω2  u=



#!

An2 ei(αn +α)x1 −iβ2 x3 , x ∈ Ω2 . n

n∈Z

%

   $%    f        f = n∈Z f (n) ei(α +α)x     &   ' (  Tj      )*+ n

1

(Tj f )(x1 ) =



iβjn f (n) ei(αn +α)x1 , 0 < x1 < L , j = 1, 2.

,!

n∈Z

                %  u  Ωj , j = 1, 2     !   #!          ∂(u − uI ) − T1 (u − uI ) = 0 ∂ν



Γ1 ,

∂u − T2 u = 0 ∂ν



Γ2 ,

-.!

 ν          ∂Ω                )*+ /      -& %    *!         -.!             $        $     $  ωj  |ωj | → +∞   $          $  ω     0   ε(x)   %1  

      Ω  2                  *! -.!    $   '           345          Ω   345    6  δ1   δ2  Ω1   Ω2              345                 



  

               

     

 

       Ω    s(x3 ) = s1 (x3 ) + is2 (x3 ) 



      

Ê

s1 , s2 ∈ C( ), s1 ≥ 1, s2 ≥ 0,  s(x3 ) = 1  b2 ≤ x3 ≤ b1 .



                 

s1 ≡ 1       

   s1        

          !     "                     #

                 

    Ω1PML = {(x1 , x3 ) : 0 < x1 < L  b1 < x3 < b1 + δ1 }, Ω2PML = {(x1 , x3 ) : 0 < x1 < L  b2 − δ2 < x3 < b2 },

   $     ∂ L := ∂x1

    1 ∂ ∂ ∂ s(x3 ) + + k 2 (x)s(x3 ). ∂x1 ∂x3 s(x3 ) ∂x3

!  %      

L(ˆ u − uI ) = 0 Lˆ u=0

 Ω1PML ,  Ω2PML .

& '

! %        uˆ     Ω    u+k 2 (x)ˆ u = 0   D = {(x1 , x3 ) : 0 < x1 < L, b2 −δ2 < 

 ( % ∆ˆ x3 < b1 + δ1 } )              

             Lˆ u = −g  D

*

  %+    uˆ(0, x3 ) = e−iαL uˆ(L, x3 )  b2 − δ2 < x3 < b1 +δ1   )   uˆ = uI  Γ1PML = {(x1 , x3 ) : 0 < x1 < L, x3 = b1 + δ1 } uˆ = 0  Γ2PML = {(x1 , x3 ) : 0 < x1 < L, x3 = b2 − δ2 }      

g=

−LuI  Ω1PML , 0

   .

!   "   %          

    

 uˆ  u     %             Ω  ,         

-  "      &   u ˆ = uI +

$ R R " n x3 n x3 An1 eiβ1 b1 s(τ )dτ + B1n e−iβ1 b1 s(τ )dτ ei(αn +α)x1  Ω1PML .

n∈Z

        %



(n)

uˆ(x1 , b1 ) = uI (x1 , b1 ) + n∈Z u ˆα (b1 )ei(αn +α)x1  Γ1     n n    A1 , B1             u ˆ = uI  Γ1PML        

An1 + B1n = uˆnα (b1 ) An1 e

R b1 +δ1

iβ1n

b1

s(τ )dτ

+ B1n e

−iβ1n

R b1 +δ1 b1

s(τ )dτ

= 0.

     



uˆ = uI +

 ζ n (x3 ) 1 u ˆ(n) (b1 )ei(αn +α)x1 ζ1n (b1 ) α



Ω1PML ,



n∈Z

  ζ1n (x3 )

=e

−iβ1n

Rb

1 +δ1 x3

s(τ )dτ

−e

iβ1n

Rb

1 +δ1 x3

s(τ )dτ

      

 



u ˆ=

 ζ n (x3 ) 2 u ˆ(n) (b2 )ei(αn +α)x1 ζ2n (b2 ) α



Ω2PML ,



n∈Z

 

ζ2n (x3 ) = e

−iβ2n

R x3

b2 −δ2

s(τ )dτ

−e

iβ2n

R x3

s(τ )dτ

b2 −δ2

       % (n) i(αn +α)x1 e n∈Z f PML &  #    $   %  !  Tj   !  

f

 

  "!  

f =

  PML  f (x1 ) = iβjn coth(−iβjn σj )f (n) ei(αn +α)x1 , Tj

'

n∈Z

 

coth(τ ) =

eτ +e−τ eτ −e−τ 





b1 +δ1

σ1 =

s(τ )dτ,

σ2 =

b1

b2

s(τ )dτ.

(

b2 −δ2

   )      



∂(ˆ u − uI ) − T1PML(ˆ u − uI ) = 0 ∂ν 2 * ∆n j = |kj n   

+ βj



Γ1 ,

∂u ˆ − T2PML u ˆ=0 ∂ν



Γ2 .



− (αn + α)2 |1/2  Uj = {n : kj2 > (αn + α)2 } j = 1, 2 = ∆nj  n ∈ Uj  βjn = i∆nj  n ∈ / Uj  *

n ∆− j = min{∆j : n ∈ Uj },

n ∆+ / Uj }. j = min{∆j : n ∈

       !     ,(- !    )    

   

    ϕ, ψ   ϕα = ϕe−iαx

 x1      

1

, ψα = ψe−iαx1

   



  









PML ¯ ϕ)ψdx1 ≤ Mj xϕL2 (Γj )xψL2 (Γj ),

(Tj ϕ − Tj

Γj



 Mj = max e

  σj  

2∆− j

− 2σI ∆ j j −1

2∆+ j

,

+ 2σR ∆ j j −1

e

 

σjR , σjI

     

, σjR , σjI

   σj = σjR + iσjI 



           



σjR , σjI

Mj



        

      

          

s(x3 )

  

     

   ! 

⎧ " $m ⎨ 1 + σ m x3 −b1 1 " δ1 $m s(x3 ) = ⎩ 1 + σ m b2 −x3 2 δ2 "   #

σjR

!

x3 ≥ b1

!

x3 ≤ b2

  σjm = 1+ δj , m+1

σjI =

,

m ≥ 1.

σjm δj . m+1

$%

&  #      '      δj !        '      σjm  σjm      

   "  !'     '#      !   

(     #   !  

        M1, M2          uˆ          |u − uˆ|Ω :=

|b(u − u ˆ, ψ)| 1 0=ψ∈H 1 (Ω) xψH (Ω) sup

ˆ 1 u ˆ 2 u ≤ CM ˆ − uI L2 (Γ1 ) + CM ˆ L2 (Γ2 )

 Cˆ =

 1 + (b2 − b1 )−1 



    

)

X(D) = {w ∈ H 1 (D) : wα = we−iαx1 

 

x1

 

L}

aD : X(D) × X(D) → C    ∂ϕ ∂ ψ¯ 1 ∂ϕ ∂ ψ¯ 2 ¯ aD (ϕ, ψ) = + − k (x)s(x3 )ϕψ dx. s(x3 ) ∂x1 ∂x1 s(x3 ) ∂x3 ∂x3 G

      *  !

       



  X0 (D) = {w ∈ X(D), w = 0  Γ1PML ∪ Γ2PML}     

              uˆ ∈ X(D)    uˆ = uI  Γ1PML, uˆ = 0  Γ2PML  

¯ g ψdx

aD (ˆ u, ψ) =

∀ ψ ∈ X0 (D).

D



 Mh              D !       T ∈ Mh     "    T   #   Ω1PML $ Ω2PML  Ω   % %  # 

   & '#  x1 $   &    (0, z)         $   (L, z)          $  ( (   Vh (D) ⊂ X(D)        % ¯ → Vh (D)  #   Vh0 (D) = Vh (D) & X0 (D)   Ih : C(D)      %  #  #    %  ##)      #     '     uˆh ∈ Vh (D)    uˆh = Ih uI  Γ1PML, uˆh = 0  Γ2PML  

aD (ˆ uh , ψh ) =





A(x) =

A11 0 0 A22



 =

g ψ¯h dx

∀ ψh ∈ Vh0 (D).

D

0 s(x3 ) 0 1/s(x3 )



 ,

B(x) = k 2 (x)s(x3 ).

    %  L  a       D

L = div (A(x)∇) + B(x),    aD (ϕ, ψ) = D A(x)∇ϕ∇ψ¯ − B(x)ϕψ¯ dx.

  T ∈ Mh $    hT     Bh              ΓjPML$ j = 1, 2   e ∈ Bh$ he          T ∈ Mh $       

RT := Lˆ uh |T + g|T =

L(ˆ uh |T − uI |T )  T ⊂ Ω1PML , Lˆ uh |T    .

    e ∈ Bh        T1  T2 ∈ Mh $

 %   *#    e Je = (A∇ˆ uh |T1 − A∇ˆ uh |T2 ) · νe ,

   (        ( νe  e #  T2  T1    Γleft = {(x1 , x3 ) : x1 = 0, b2 − δ2 < x3 < b1 + δ1 }  Γright = {(x1 , x3 ) : x1 = L, b2 − δ2 < x3 < b1 + δ1 } + e = Γleft ∩ ∂T   



  

T ∈ Mh  e       Γright      T           ( ' ∂ ∂ −iαL ) , Je = A11 ∂x (ˆ u | ) − e · (ˆ u | h T h T ∂x 1 ' 1 ( ∂ ∂ ) . Je = A11 eiαL · ∂x (ˆ u | ) − (ˆ u | h T h T ∂x1 1

  

  T ∈ Mh    ηT             $1/2 ( ' "1  , ηT = max ρ(x3 ) · hT RT L2 (T ) + he  Je 2L2 (e) 2 x∈T˜ e⊂T

 T˜                T    |s(x3 )|e−Rj (x3 )  x ∈ ΩjPML , ρ(x3 ) = 1  x ∈ Ω.

 Rj (x3 ) (j = 1, 2)        x3  x3 − + R1 (x3 ) = min ∆1 s2 (τ )dτ, ∆1 s1 (τ )dτ , b1 b1     b2

R2 (x3 ) = min ∆− 2

s2 (τ )dτ, ∆+ 2

x3

x3 ≥ b1 ,

b2

s1 (τ )dτ

x3 ≤ b2 .

,

x3

       C > 0              Mh                  ˆ 1 ˆ ˆ 2 ˆ |u − uˆh |Ω ≤ CM uh − uI L2 (Γ1 ) + CM uh L2 (Γ2 )  1/2  2 ˆ +CM3  Ih uI − uI L2 (Γ1PML ) + C ηT , T ∈Mh

    Cˆ        

M3 = max

Mj (j = 1, 2) −

I



I

−∆1 σ1 2∆− 1e

1 − e−2∆1 σ1

,

      +

R

+

R

−∆1 σ1 2∆+ 1e

1 − e−2∆1 σ1





 .

           !       "#$   σjR  σjI         Mj   %        %       e−Rj (x3 )   "#$   ΩjPML     &  & "#$                      '     & "#$      "#$               

       



  

                   

                                           ! 

      "    !     !  "   "  # δj   "        σjm $ $%&'' (                 !  )     EPML   *  +     EFEM ! EPML = M1  u ˆh − uI L2 (Γ1 ) + M2  u ˆh L2 (Γ2 ) , $1/2 "  EFEM = M3  u ˆh − uI L2 (Γ1PML ) + ηT2 .

$%' $%,'

T ∈Mh

EPML  EFEM        "      -  .    ! * 

 δj  σjm    Mj L1/2 ≤ 10−8 !  #         !  *  +   .   /          "  * !      *     "    "      

      $%,' 0  " T ∈ Mh ! *             !) η˜T = ηT + M3  Ih uI − uI L2 (Γ1PML ∩∂T ) .

1 ! !       !     

 2     TOL > 0  m = 2, δ1 = δ2 = δ • • •

3

 δ  σjm    Mj L1/2 ≤ 10−8  j = 1, 24          D = Ω2PML ∪ Γ2 ∪ Ω ∪ Γ1 ∪ Ω1PML        Mh

 D4  EFEM > TOL

5 *   Mh       !  "  η˜

T

>

1 2

maxT ∈Mh η˜T

*   T ∈ Mh

5        $%%'  Mh 5         Mh  ! 1 ! !                    "    δ  #    "       σjm     "       Mj L1/2 ≤ 10−8  j = 1, 2    +     



   3

2.25

x3

ε1

0 ε2 −1

0

0.3

1.2

1.6

2

x1

 

     

1 total efficiency

Efficiency

0.8

th

efficiency of 0 order reflected mode

0.6

0.4 st

efficiency of −1 order reflected mode 0.2

0

0

2000

4000 6000 8000 Number of nodal points

 

 

10000

         

µ = 1



     

           

                   

  !      " "  #   $    ε1 = 1, ε2 = (0.22 + 6.71i)2 % θ = π/6% ω = π " L = 2     ! & "  '  !(      )     & " !(  !       )     " "  #   * #   + !    "     "     "     , " (    !     )     "     *- " "   

    (

!  ,+,    





    *+.   

!           " "                       "    %   

     "     





    

                                

 /0  % %  "% 1     2   (   3   45 6 4  4 7  % % -8*+ 9-:,; /$0 < % 1     2   $ " * "    5    7     4   "   % % :8- 9--;



                  '   + 

 "#$%&"#'$ ("%%)*

,   ,   

  ./    )   1

   

 !  

   + 2  3  -

 !  

 4   5  ("%%*

6   1 + 7 5

3.   ,  

    8-  



 ''9&'9" ("%%*

9   :  !   ;  ,  



 , -

 "0)&$## ("%%'*

 +  

/ <     ,

  .     ;   !=  ! 

 ''&'6$ ($##$* 0   : > 1

 

/ <     .

      ,  ./    !=  3   (  %   ?  7 +     "#  >? 

 "'6&"69 ("%%$*

""   + 3 21 !  A   , 

,   -

 ")9&"9" ("%%0*

 / /  ,  

/  

      /-

/ ?5 !=  3  

"$ !  !  A

,

  

*

@  

  5 

!=  ! ! 



 '66&'00 ($###*

452B  

/  < 

    = C /  , ?  ($###*

            " ! 42 :  ! ?     

 ,   , -

  ,        



 '0&'% ("%%#*

"' > 1   : C ,  /  ,  8-   / <  <      ,    



-

  

 ") D        /   4 3 , >  !  =/   ! <  

    

    "'&$# ("%%)*

"6 D  :7 / 4

B  ,   

 E   

 ,     1      !

 )9&%9 ($##$*

                              

 



!"#$ 

%             &    

     



  '   '    '   

            (

     )    

 )        * '         +        *

      ,

  

   '   '       -          

   *       '

               *   

             .   *          /          ,           0                          .          

  &       1 .

                              

     &    

  

 

  2      *        

     3       1 .

                                      

        

                                         

 !          "    !     !         ! !     #      "

   $  

    %

 &  '  ("$)   ! 

 !    *  !      '         !      "$   +,-. /+0.1



  

                 

                  !"#                

  !$%&'#          (             )                                     *                    +                       

   ,                            - .          -  .               -        

    .                                 / /         *      - .  /0                       !&%1 &&%&1#                           2                                            3                    4           / 



           -5*).           ,   &678 !&%8#          5*)      5*)                - &.            -&  9.            +     :     -1.                            ;             &  

                  9          9      

    &           9                           ;             &                 

     <    &          9  

      



                                         

                                                                                                   !                    !                                                       "                 #  $%  &             % '( )*            !                 !     

                                           

 +     &                    ( $    

   )$,         !                      - '( )*                                                        

           &       

                     

  

                                        

  

 

 

 

  

              

   

          

                              

   ! 

     "      

 #    $  

          

    $

  #  %        %            n   & '( )  $    Oxyz              $  z ≥ 0 *  ri (xi , yi , 0)            Fi (Xi , Yi , Ni )         

      



        Φi = (p − pi )S             i = 1, . . . , n   p         pi             S            R(Rx , Ry , Rz )                         M(Mx , My , Mz )                    (Xi2 + Yi2 )1/2 ≤ f Ni ,

i = 1, . . . , n,

 

  f    !     Ni ≥ 0             "                  Rz +

Rx +



%

Xi = 0,

% (Ni − Φi ) = 0, Mx + yi (Ni − Φi ) = 0, % My − xi (Ni − Φi ) = 0, Ry +



Yi = 0,

Mz +



(xi Yi − yi Xi ) = 0.

# $

       %  i = 1, . . . , n           Xi , Yi   Ni       # $           i = 1, . . . , n  &      #           '  (     &   Ni ≥ 0                z = 0        $    '       )     Xi  Yi     $       i = 1, . . . , n              z = 0 *  & K       Oxy        % xi Φi + My x∗ = % , Φi − Rz

% yi Φi − Mx y∗ = % . Φi − Rz

+



  

                 

    





coD

Φi > Rz ,

K ∈ coD,

      

D = {r1 , . . . , rn },

   

"      

Q=

x,y

Mz −xR P y +yRx , ρi Ni

*1/2 ) ρi = (x − xi )2 + (y − yi )2 , sup

 &  

x, y !

Oxy !

#       

sup Q ≤ f,

%



$

i = 1, . . . , n.

"        '(  

Ni > 0  !    ( '  (

        $    ( )     (    

n > 3!

Ni

"       (    (

    ! "    ! *! "      &       (   !     +  +       (  (  (! "    ,      -      ,  .  (  ! /'                (   (  ( 

Ni   (! 0! "              

'   (   (  

   (          ! 1 '      $        ( 

Ni

! "   (     

sup Q ≤ f,

2

x,y,Ni



sup

x, y   Ni  !  (        

 &    

3   (      '(! ! 3  

           (     

(Rx , Ry , Rz ) O!

   ( (

(Mx , My , Mz )

! 4 Φi = (p − pi )S, i = 1, . . . , n! #! 4        

     

K!

! 4&    !              !              (! !

  &       (       

Ni          *! "    $    ! 3      0  (((  (  

 2         2 (  &!     $ 2          * 0      (

      



                                              pi                   !     



 

               

    "   

        " #        !        "           

a

 

b

!      

   h        r       m         (n = 4)    p0 !                       $  %    $             $     %  &     &           "   '

m ≤ 2π(p − p0 )ar2 (gh)−1 , (     

m ≤ 4πf (p − p0 )r2 g −1 .

a = 0.344m, b = 0.151m, h = 0.095m,

r = 0.034m, p0 = 0.1p, f = 0.5 

   

               "        48kg 

      "    !                   30kg

67kg

)     &                  *+ ,- !       "            "   ./0              $              (  1 !         "    )2 *3- !      "               & & & 4                  

  $ 

        

            4 !       "        

  



(  !        

"      



                " "  5               " "    

  (        " "  6            " "          5               "   !             "   *3- 7                8        "     

  9      



  

        

                                                              !     

              "                  #        $  !      "        ω             %   #    !                α        #                   "&            ' "            (            

             " 

      



                                    

        

                       v1 = Lω   L     !  "        #  !

 $         α → π/2 " 

      % v2 = 2(21/2 + 1)π−1 Lω = 1.54Lω      α = π/4

  "  #&  #      #   '  #     &

    " (  )  * "  #   # $                     # & +                !     "       #                     #           ,       !   #     - 

        "     #            #      #   "  #    #          -   .                &                  #       "         #         # # 

                 # /       

     

    #  #      #                   #       



  

                                 

    

              

  

    

                                  



    !    !  

    "     # $    !     

     

      

       

 %&

      '    

O1 O2

() *+  ! 

    (  +     #         #      #

O1



O2 

        





F

O1

O2  " M1

      

P

O1 O2

   

      " 



   

M2

  

" 

N



 

      



           

F = f1 M 1 + f2 M 2 + f0 ,  

fi

ni , i = 0, 1, 2



N = n1 M 1 + n2 M 2 + n0 ,



             

        !

  "    M1  M2         |M1 | ≤ M10 , |M2 | ≤ M20             F    ∗  # $ %  |F | ≤ f N   &  F = max F = F ! ' (           & )

M1 =

& 

   



       

O1

±M10



±M20 

M2 =

F = F∗

!!        

    ! )             !

M10 , M20 

 

           

 

F∗

   

x   

P

 





1 = O1 O2



& 

  

2 = O2 P 



     *      

      "! +! ,          

     

x

       

  /   

! '  

       

          # 

x0



x0 − s/2

 

O1

M10 , M20 

s

        .    

F∗

   .  

  0     ! 1  

 #&       

  

 

s



   

      

 

1

h



!

 

2&0   

min

x∈[x0 −s/2,x0 ]



 

     ! -    

x0 2

F∗

+

 #& !

 

2&0    + 

x0



2 !

)                    

& ! 4 

   ! 3 

M10 = 68N m, M20 = 27N m, f =

1, s = 0.28m, h = 0.24m, 1 = 0.15m! )      (     2 = 0.15m, x = s/2 = 0.14m  F ∗ = 642N ! )     ( . ∗  5   0      x0    x0 = 0.105m, F = 786N ! '  (   6   0      x0  2     x0 = 0.02m, 2 = 0.21m, F ∗ = 1047N ! )   0      .  

       ! 7     

    



  

     

  ! )              

f  

 

2

M10

    &     

M20 

   

 

    

F∗

 

h        

             

    !



  

                          2             F ∗         x                              M10 = 45N m, M20 = 8.6N m, f = 0.2, h = 0.24m          F ∗  x    2 = 1 + 0.01(i − 1)m   i = 1, . . . , 8         

     i

            

  

   !     "  #           "   #          $%& '               

       v  

           (    

 

                  

                    T                    )   T /2  )             *  )          )       +          )                      , "   # -  )     )                               

                           T /2                             

      



                                                                  ∆t             !                          "     #   $    %     v    #$               x           O1 & '             s       % 2      ( %   (# ) 1 = 0.15m  $                                     



    s  x

s x

0.14 0.11 0.08 0.05 0.02 −0.01 −0.04 −0.07 −0.1 −0.13

0.01 0.06 0.11 0.16 0.21 0.26 0.31 0.36 0.41 0.46

0.003 0.004 0.004 0.020 0.026 0.030 0.048 0.053 0.069 0.070 0.081 0.078 0.085 0.080 0.085 0.078 0.082 0.076 0.080 0.077

0.005 0.032 0.055 0.070 0.075 0.074 0.073

0.005 0.034 0.057 0.069 0.071 0.070

0.006 0.036 0.059 0.068 0.067

0.006 0.005 0.005 0.004 0.034 0.032 0.026 0.057 0.048 0.065

    l2  s  x l2 s x v

0.13 0.24 0.06 0.076

0.15 0.30 0.12 0.087

0.17 0.30 0.15 0.103

0.19 0.30 0.18 0.129

0.21 0.24 0.18 0.156

0.23 0.24 0.18 0.196

0.25 0.12 0.15 0.245

        *       +  ,        - .        2  (# ) 2 = 1 = 0.15m           / #              0    



  

          v = 0.085m/s     s = 0.26m  x = 0.11m       2, s  x                  2 = 0.25m                                                       

    !                     "#$ %             

  &                                                           

           '         

       ( )     

      "#$       

                                           

)   

            

       

  "*$        !     

    

           '       "$   "+,*$                        (         

        )    '           -                 

  

             

   & ! 

 .  !    !    

   

    

         "+ / #$ .                   

    "0$    

       

    (

   !    1     !             

 "$ )     !   O1 C1 C2 O2       ( !   Oxy .   .             O1 C1 , C1 C2   C2 O2                   -  C1  C2    '     m1        O1  O2     '   m0           m = 2(m0 + m1 )        C1 C2  2a   

      '    2   x, y  

     

      θ          x!    αi             Oi Ci , i = 1, 2 .  

      



   

                  O , C , i = 1, 2    Oxy          m  m   f  f           M  M         C  C       

            α  α                                                 !                                     α (t) = ±α (t)            !             "  ω  ε  #          

       $ ω = max |α˙ (t)|, ε = max |¨ α (t)|, i = 1, 2. %&'( )   #               i = 1, 2                            #    *+,$ , + ≤ m gf . m  [ω + (ε + gf  ) ] + (ε + gf  )a %&&(               ω  ε  %&&(       m f (a + ) < m f a !         

                  τ              T    $ τ  T           M  M                       $ |M |  m gf  , i = 1, 2, m = max(m , m ), %&-( f = max(f , f ), a = max(a, ). i

i

0

1

0

1

2

1

1

2

1

1

2

2

0

0

0

4 0

0

0

i

0

0

−1 2 1/2

i

0

0

−1

−1

1

0

0 0

1

1 1

2



1



∗ ∗



0

1



0

1

1

0



  

                                        

                                                                    x                 S  F                     αi          α0i → α1i , i = 1, 2                            !                S, α1 : 0 → γ, α2 (t) ≡ 0  γ ∈ (−π, π)  "                 #!  $%& 1. F, α1 : 2. S, α1 : 3. F, α1 : 4. S, α1 :

γ → 0, α2 0 → −γ, α2 −γ → 0, α2 0 → γ, α2

: 0 → γ; : γ → 0; : 0 → −γ; : −γ → 0.

'   (   "                "        $      $)(            

           "    α1 = α2 = 0          S : α1 : γ → 0, α2 (t) ≡ 0

       

                                    x          

                       *     +,-                       x           $)(  ∆x = 8m0 m−1  sin2 (γ/2). m = 2(m0 + m1 ). #$.&           y                         $)(   ∆y = 0, ∆θ = 0                  

       v1 = ∆x(2T )−1 .

 

                                                             !      "!  !               #!    !    $       %           ! !                         %             !  

  !  

     &'   (        '%        ) !                !  *

ω(t) = |α˙ i (t)| = ε0 t, ω(t) = ε0 (T − t),

t ∈ [0, T /2], t ∈ [T /2, T ],

ω0 = ε0 T /2 = 2γT −1,

+

ε = 4γT −2 .

, !  !  +        #!

m0 {[(2γT −1)4 + P 2 ]1/2 + P a−1 } ≤ m1 gf1 , - !



m1   .    2a γ  $   m0  !   T

&  

      

P = 4γT −2 + gf0 −1 .



           

      /     

f0



f1

   

     &'   v1   0   $        !.         f − ≤ f0 ≤ f + , f − ≤ f1 ≤ f +  1        !   /       *

f − , f1 = f + 

    

f0 =



   

                             V1 = v1 (gaf + )−1/2        γ  χ = f − /f +            λ = /a                             λ = /a  !  "  γ  χ

   λ

 #         # $   %&'$       

 ( |Mi| ∼ 10m1gf +  )    $     *         a = 0.2m, m1 = 1kg  +                        ,        γ              $  #        #    40f + N m               f − /f + γ,deg l, m m0 , kg m = 2(m0 + m1 ), kg T1 , s v1 , m/s

0.2/0.2 0.1/0.5 0.2/1 0.5/1 0/1 60 0.32 0.17 2.34 0.77 0.030

60 0.57 0.40 2.80 1.10 0.075

90 60 90 0.64 0.4 ∞ 0.39 0.26 1 2.78 2.52 4 1.08 0.49 ∞ 0.167 0.084 0.28



               -      .    /    0   ) " 1  1 "    

      



                                                                                                                                                                 !                          

          "           #              $                 "    $                   %       $     

                           %&'   '        (     '    

     #                        & )    (  '   * *    + , ,  , + -   "  -     %&'                 

            .

         .   & / 010200102

 324     +                    "  5   6    "  "     7 2708291 2:;: 314 ,  + , .   ' < "$  < , (  " + 6      = '                5   6    "  "   %     2 21>8 291 2::7 374 6      =   * * ,  + , '   .  ?  6     @ $   6.6 &

  .  2::9 394 6      = ,  + ,   * * +   +  '                    % &     A6&? %    6       .   %           , 2::B 3B4 .

  & )   6             % &    27  C  6 

    6    "   2::>



   

               



        

!"# $%"$

!&'''# (      )*+                    



!,# ,-(%$'. !&'''# .     /     +0             



!"# "$%&'

!&''"# -     0    )+0               + 

 !,# $$%$(( !&''"#

"'   



1 +   

   20  



 

 !"%&# &3$%&$ !&''3#

   

"" 4      5 1 1 6  1 /  7 8*     0        9 :    " 9 1    9  ;0 <

 !"-.# "& =  1 6

0 *    0  



9 :     91+9  1   ;/71>+.  ) !"-.# "3 1  1 7 1 1  /  7 6  1 6   *  ) 

  *    9 :    "

9 1    9  ;0 <

 !"-.# ",     /      1  ?

 &"-%&&, !"--'#

"$     ?@ 0     1

0 0  

         

 !# "%"& !"-..#

" < 7 7 1 1  /     *+

   )  0       1  1  

9



!,# &%3( !"--(#

"( < 7 7     5  * 1  :A  1

    )+0     )  * +

   *    

 !(# ,&-%,,& !"---#

". :A  ;

  < 7 7     5  B 2 1           0+ ) 0  0 1  8

 !&# "$-%"., !&''"#

"- < 7 7     5  B 2 :A  ;      0+ ) 0       

*  0    1 +

 !,# ,3"%,& !&''&#

&' B     6 C 7    !"-.# &" =  1 <  9  ;0  1 +     +    /D E*  :

/D !"--3# &&        +     9  * 

                              

 



!"#$ 

        %      

            &                   

       

              

      & '         

      

       

   '     



%       (    % 

    )     )   %  *      +                      

 

    ,             (  -   

 

    

                                         

                                                         

                      

               

                   

 

         

        

    ! "      #            

          

         

$     

  %! &        #         ' 

          

 (        )   

          



   

                                                                        

                        !                     

 "#  $                    %&  '            (                             )       *         *                  )                     '                         

 +,-  )      ,,.,#    

       /  0                                     1  (               )                   2                            '       ,%  3              (        (     2                           

4  

             

          '            Oxy   *        5             (     * ' (                    '   *                       4          F                      16  7 F = −f |N|v −1 v, |F| ≤ f |N|,

if

if

v = 0,

v = 0.

/,0

8 N              f   9        v             v = |v| :   

 ;              

           O∗ /2  ,0 '         ,                  < 

      



            m1   m2      

C1   C2               Oxy 

a1 = O∗ C1   a2 = O∗ C2                  C1   C2    J1   J2                                     m0                                   m = m0 + m1 + m2                           f1 , f2    f0                                                        !                

  "#$           

  x0   y0          O∗  θ      x%     O∗ C1        α       C2 O∗        O∗ C1         xc , yc      C    &   xc = x0 + m1 m−1 a1 cos θ − m2 m−1 a2 cos(θ + α), yc = y0 + m1 m−1 a1 sin θ − m2 m−1 a2 sin(θ + α).

"'$

  ωi         i = 1, 2          &         O         ˙ 0 cos θ + y0 sin θ) K = m(x0 y˙ 0 − y0 x˙ 0 ) + m1 a1 θ(x −m2 a2 (θ˙ + α)[x ˙ 0 cos(θ + α) + y0 sin(θ + α)] −m1 a1 (x˙ 0 sin θ − y˙ 0 cos θ) + m2 a2 [x˙ 0 sin(θ + α) −y˙ 0 cos(θ + α)] + J1 θ˙ + J2 (θ˙ + α). ˙

"($



   

  M                                  −M 

      

  

       N   

        a          

                             m          !      

     Pi , i = 0, 1, . . . , N   "           Pi    f                 Pi  i = 1, 2, . . . , N − 1   Mi             Pi    Pi Pi+1 #          Pi−1 Pi    

   −Mi      $              %                 $      

!         

    

       &                 ω0  ε0   ' !    

!           g   !

    $       (  ω02 a  gf, ε0 a  gf  )                              

*     $           +                    

   x$ ' ,     0   -   ! θ = 0, α = 0           

                                   α        !        )           !     (  ˙

    ε0 = maxt |ω|˙   ' 

!  ω0 = maxt |α(t)|           

  .  '    

       "      /

      



      

 

J2 ε0 + m2 gf2 a2 ≤ m1 gf1 a1 ,



J2 ε0 + m2 gf2 a2 + m2 a1 a2 [ω04 + (ε0 + gf2 a−1 )2 ]1/2 ≤ m0 gf0 a1 .         ω0  ε0 m2 f2 a2 < m1 f1 a1 , m2 f2 (a1 + a2 ) < m0 f0 a1 

      

                                           

|M |  m∗ gf ∗ ∗ ,

m∗ = max(m0 , m1 , m2 ),

∗ = max(a1 , a2 ), 

f ∗ = max(f0 , f1 , f2 ).               

     

        !                

K

  "   

# 

C



$    

    

xc = const, &  

S



F

yc = const,

 !     

K = 0.

%

      

  "       !      '  $

1) S, 3) S, 5) S, 7) S,

α : 0 → β, 2) F, α : 0 → −β, 4) F, α : 0 → −β, 6) F, α : 0 → β, 8) F,

α : β → 0, α : −β → 0, α : −β → 0, α : β → 0.

)                

β

 *  

β ∈ (−π, π)

α

(

      

+      !   



  

   C                   x               C                C                x                      !"

∆xc = 8m−1 m2 a2 sin(β/2) cos(γ/2) sin[(β − γ)/2]

#

$          

γ = β/2 + A0 (A+ A− )−1 arctan[A+ A−1 − tan(β/2)], A0 = m(J2 − J1 ) + m21 a21 − m22 a22 ,

%

A± = [m(J1 + J2 ) − (m1 a1 ± m2 a2 )2 ]1/2 .             C     y            &           ' &    !        yc  θ       (" ∆yc = 0, ∆θ = 0         '  &             v = ∆xc [4(T + τ )]−1    xc   & # T  τ                    τ  T  )                 &                !     &               &        (   *          &   +     &     &     m1  m2      ,      m0 &              a1  a2               J1 = m1 a21 , J2 = m2 a22  -  #  % .                    " m0 = 0.6kg, m1 = 0.3kg, m2 = 0.3kg, m = 1.2kg, a1 = 1m, a2 = 0.2m, f0 = f1 = f2 = 0.2 /          " T = 1s, ω0 = 2s−1 , ε0 = 4s−2 , β = 1rad *         0        0               &   -  #  %    & ∆xc = 0.085m               v = 0.021ms−1   -        -     1      8N m                               ρ     1  2    2               f        ,     &   &        &        &       &     &        &       " mi = ρi , ai = i /2, Ji = ρ3i /3, m0 = 0, m = m1 + m2 , i = 1, 2  -  % /             m0 = 0               ! .                &    ω0  ε0     2 /1 < 0.255

      



  

            

   

               !      "    #    Oxy $                         x % &    '              (  )

          

$  '           ! ("    P0     x %       Pi  i ≥ 2   '% *    α    x %   P0 P1   

  #        α0      a b c   ( $  %    P0 P1  P1 P2   P2 P3   *    α   

  α0  #       β    P2 P3   x %   0  α0      d   ( $          

     e     P1 P2  P2 P3             P0 P1 P2     c     %         + 

  % P2    x % ,%        P1 P2  P2 P3   P3 P4                    x %    -    %              

.  %     x %    .   %          α0    *     

      

   PN −1



  

                         f            PN       x           PN −2 PN −1 PN    α0             g                    x     L = 2a(1 − cos α0 ).  ! "   #      $              a%c         &!       P0 P1  P1 P2  P2 P3   P3 P4      P2       x        α         P0 P1 P2    α0    #   β        P2 P3 P4  #     α0    d   &        '       P3    x    e   & (    #          $    # )         N    f %i   &                 ! (    #    #  #     #      #    *#   +      #      #       α  L ,-.  #  #        #     +     ,-. /        

      



      

                               

                         



           



             

      

                           !"#           $

                      

       

      

    

% 

           

  

M



     

    !"#     ( 

 

 $  

M ≤ 2mgf a  f

 )  



N ≥ 6

(N ≥ 5) & 



  

    ' 

      



                                

 &              *     

   

          

*           %                           +          ,                                         

                                %

  

  

  -                   .  /  

      0    /

   1 &   +                                       

  



  !# 2  / &  2  //               3  &  /  

0  4 567 !75" "# 8 3 &  2   9 

: ;  2  !75< =# ,  &  

 9  ,   ;   / !7<>



  

                  

 !  !  " 

 #     $  %&

' (  ) *  + , - ./    # ! 0  %  ( #  ( $  1  * $  (21* 3444   !

 5637568 .3444/

6        0      -!    ! %& )    '    0  ./     # ! 9! %  ( #  ( $  1 

* $  (21* :;;; )

 :;37:;< .:;;;/

8 ,  0  ) !  +     #   $   $  -!    $  %  =  # * $  *!

.:/

44733 .344;/ < ,  0    % 

 * $ & 0  2      )

  >?#  @  >?#  .344A/

5 (!" ' 0    = 1 B # !  $      -! 

   

 

  %&    # !

%CCC %  ( #  * $       



0

 <:;7<:6 .3443/

4   = 1 *#  =  (!" ' 0  D- D       #  !

   $  %&    # ! %CCC

%  ( #  * $      



 



3;373;8 .344A/ 3; > - =    = '  #   

  $ 

%    # ! %CCC %  ( #  * $      

 )



 3:473A;; .3448/

33 (!   2 9!    #         !   

 =  # 

 )!  )!

 .3/

6736

.:;;;/ 3: (!   2 9! -     #        !   

 =  # 

 )!  )!



./

4<76;5 .:;;;/ 3A (!   2 > !    #  !$       =  # 

 )!  )!



.3/ 3A735

.:;;3/ 3 (!   2 (  $     #  -   !  

 !  

 =  # 

 )!  )!



./ 68676<< .:;;3/ 36 (!   2 0      #    ! =   # $   ( 

:A67:68 .:;;A/

38 (!   2 0    !  

  # -   $  %

                

1     1     1       2 1

              

2

  !"# $%"&'()   * 

 

        

               

+  ,  

   +,   -  .     / -- ')!!) 0  

      



1    1%  2   + 1%

         33     3 $      1%      2           

 3 0               3

   2      

         2         2  1%   3 0     - 1%                %  3 4 1%             3 0        5   3 0 2        5          2      2          3

                                ! "   # 

 $ %&' (   ) *                  

       

   !  *             *      ) *           !  *            ) *    +    ) *  %,'!         *                       ) *                    ! ) *      -         



         

 

  

           

                    

      

   !"         !"      

              

     

  # $      

  %

  & $    

  

       !      '!"  (  )    +&,           

   $ *  ! "

   

 

& 

              

          -   

           

 !"  

        



$ .           & /  "        

     0 1  2  

3                        

αx , αy , αz

  )        

 0 1  2            

   

                       

δ x , δy , δz 

   4

     

   5               $   $ 012        $   6             $   '012αx , αy , αz ( *"   7$   

δ x , δy , δz 

  012       

   $                   

Rx , Ry , Rz

    8 



⎡ ⎤ ⎤ 1 0 0 cos(θ) 0 − sin(θ) ⎦ 0 Rx (θ) = ⎣ 0 cos(θ) − sin(θ) ⎦  Ry (θ) = ⎣ 0 1 0 sin(θ) cos(θ) sin(θ) 0 cos(θ)

 '(



⎤ cos(θ) sin(θ) 0 Rz (θ) = ⎣ − sin(θ) cos(θ) 0 ⎦ 0 0 1      $   



  

           "

      $ 

  $

7 \ 9 : ; " |        $      $ 

*     !"       "        $ 'δx  <

= δy = δz = 45o , αx = αy = αz = 0(

= I[−IL][+IL]I[+IL]I[−IL]I[+IL]I[−IL][+IL]IF = I[+I]I[−I]I[+I]I[−I]I[+I]I[−I]I[+I]I

             

   I i P p A L F +(δz ) −(δz ) &(δy ) (δy ) \(δx ) /(δx ) | [ ]



       



        

         

        

         

           

        

              δz         Rz (δz )      δz         Rz (−δz )       δy         Ry (δy )      δy         Ry (−δy )       δx         Rx (δx )      δx         Rx (−δx )           Ry (180)                                            

                             ! "      #$        %         &           &      %    ! "       #'   %         &        ! ( &   )    

" ! #!

           *%        &      ! (             ! Pred = (Prob1 )Succ1 , (Prob2 )Succ2 , . . . , (Probn )Succn

       Succi       &  Probi  i = 1, 2, 3, . . . , n! (                   +   #! "   I = (0.40)I[+iL]I, (0.30)I[−iL]I, (0.30)I[−iL][+iL]I. (                %    &  ,!-, ,!$, ,!$,  &! (      

   " ! .!



         

         $ "%  & '   ( 

 

+, 

  !  "  # 

 )* "      +,   +$, 

-  $$  ./ .0 % .0  ! 



%



   

                                    

       

                             

             



     

         

                

    

   

     

              !      "           !                                  !                                   #        $    

    #              

%             &   

    G(t) = L +

U −L 1 + em1 (T1 −t)

G(t) = U G(t) = L1 +

U − L1 1 + e−m2 (T4 −t)

; 0 ≤ t < T2



; T2 ≤ t < T3



; T3 ≤ t < T5





 

         

G(t) = L1 G(t) = L + 

L L1

; T5 ≤ t < T6



; T6 ≤ t ≤ T8



L1 − L 1 + e−m3 (T7 −t)

 

               

                  

U m1 m2 m3 T1 T2

  

                                                              

G(t) = (U + L)/2 G(t) = U

      

    

     

T3

      

    

G(t) = U

  

T4 T5

   

G(t) = (U + L1 )/2 G(t) = L1

      

    

   

T6

      

G(t) = L1

    

   

T7 T8 t

   

G(t) = (L1 + L)/2 G(t) = L

      

      

      

                                                    

    

Yi = c(a)ni 

Yi

        

 "  

ni

!

             

       #     $     

  "     %       

  

              $    &

Bi = βni + b 

Bi

        

β

      

Bi  ni

                 '                          (      

   



             



   

                                                                     

           ! " "δ #"# $"ω  %   %  &&&  %  '  '  %  '  %  &&& '  %  (

(

  ! " "δ #"# $"ω  %   %  &&&  %  '  '  %  '  %  &&& '  %  (

                                                                     δ                                          ω                                                        

         

         

                        

                                                                      !        



         

      

                                    

                                         !"            

 #  "      $  

       

                                         %            $                                                      

    $            !&   $    $' ( $  $     )          '       *         *                      

            *      $                          $%     $          % $             % +      $%   #,   +                -        .            

 $         $%    

             

        



 ! "    !"#



                                                      

                                      !"           #                   

       #       $  %

  &# '#(   )*#



 

         

                 

       IL[+IL]IL[−IL[+IL]IL]IL[+IL]IL  

[−IL[+IL]IL[−IL[+IL]IL]IL[+IL] IL]IL[+IL]IL[−IL[+IL]IL]IL[+IL]IL i

                                         !     " # $  !%        &'                       

 

     

 !   "

             



              

  

    45  45        0.7        !  "# $  % 

  & '& &   ( #   )  &   #  (   (  $$ # * &  + &   #  #  )' &   ( +$(  ') ) #   ) (,  # %'  # (  ( %'  - &     , ' . #  ## #   %'    #  & *   ')     # / # + & # /    -) 0 -   #   $($   &   # )' %'  -   $($  (  )     # )' $  ((    - $  ((     / #

     (  - * $ 1   (  2$ ,   & ,      ( # * ' (&  ( ) (  # )'    ( +$(  - /*   +  . +$(   . #  & (&   ) #$( #   1   # # +  & # +    - # * &  + &  .    )  #  $  -  & '& ( ) $ #        ( #  +  & -   $  ( &#   ( &  . +    '& + & .  $ '  (  + *   3$   + +$  . ,   *   .    . #$    (   + $  ((       *$  - $  $&, .  ) (($ #  (    &   0 4 $    &  %$  & 45    &  .  %'  )' &   ( +$(  ') ( #  +    4+ (      - ( ' 6 070! 6 6 4 $  5     +  $  # * $ 1  + &    .  8 -   4 $,  9 *  ' :,, 6



 

         

                 ! "# $ %& '' '   '  ! ( %# #  

 ) #  

*  +,-.+/-

0+11+2 3  )   # !4  *# 4  ' 5  

 

 ## # &6 7 #  #     '#   # 8  9/: +3:.+-, 0;//:2 - )  <  # !4  *#

' #   #   !

  5     '#    # 0 8< 9/:2 /=.3;1 0;//:2 :  # !4  >' 6  $    6   #

  *  ? ! @  0;//12 =  # !4   )  A B6 $ )B # ## %  



 

' 5  

  '#





 #

8

< 9/ -;.:1 0;//2 ,  # !4   # ) )  < 6   6   '#  8< 9 /3 -;.-, 0;//32

                     

                        

        ! !         "               #               $        %&'(     !  )  $"

          *      ( %    "             !  +&     "     $ " (     

  "                     $ ( ,   -                !  $ (          ! "           

    . (          )     #  $ "       (  ! !        .   !   /     (  "

 "  )                 )  "         (

 

                                                   !         

                        " #    $                                 

        

                 %         &                   



   

    

                     

        

   

    

       

      

    

        

   

        

         !           

  

        

          " #  $         "  

     " 

  

 "   "            % & $ '    (")    

 # %       "    *   

         

     +           

   

    "       "   

   )  "     

10000

k−

   

1400



3000

   

  ,              

        )  "         )  "             "             

      "  " 

         

   "  "  

       )  "       

  

   *                

             

      

1m/s

  -           "           

      

*      

          

                         .*/    

            

         

      "      

'                 

  

   /      .*/   1 2 

 

 

 0    /   

      3           

        

US

       

  " 4     5    3    6      

x, y, z 2

   

 * 7       1

  

  " 6+       *        

 0     "   

  

  "                      '                 

    

    "    8 * 



          

      8  5     8 

 6       



 9 *       

             

            





                                                                                              



      

                                      y         Us                 ∇·u=0

 !

1 ∂u ∂ + (u · ∇)u = − ∇p + ν∇2 u + S + (Us u) ∂t ρ ∂y

"!

   u    #    $ p       S        S=

ν 1 (J × B) + χu + gβ(T − Tref ) ρ H(χ)

%!

  J × B       & '                        J  B           # (              )(*                        +   #               & '                                   



   

                 

  χ            χ      0       1        H(χ)           H(χ)                        10−8             u                     Sz    !          "    " # gβ(T − Tref ) "   $    %

     β      %   &   "

  g         "  Tref        288K  '

               "                             1 ∂χ = (T − Tliq ) ∂t κ

(

     "    "  

        χ   "                 # ) χ      1    " 0  "    χ  *   1  0        T   "      Tliq  "              χ = 0      χ = 1          κ                T   Tliq                 T  Tliq         %   "# ∂(Us T ) L∗ ∂T + (u · ∇)T − = α∆T + ∂t ∂y ρCp



∂χ ∂(Us χ) − ∂t ∂y



+

"  α          Cp        L∗          "      Us                   ,                                       " *          %                   "            

    u, v, w,  T         '      "   

                                    - %         "     .      %    "    

              qgauss 



  3Q 3(x2 + y 2 ) = exp − πa2 a2



Q = EIη             E      I      η  a           





    

          !

qevap = W · hf g 

W

          



hf g

       



    qrad  

  qconv          

qrad = σb (T 4 − Ta4 ) 

σb



qconv = hc (T − Ta )

  #  $% &



 



      

"

hc





 

         

              

  

Ta

   $

           

 

   

−k

∂T = −qgauss − qevap − qrad − qconv ∂z

    

  

'

k

%        

 

      

            ()       

        

     

$         

−µ

∂u ∂γ ∂T = ∂z ∂T ∂x



−µ

∂v ∂γ ∂T = ∂z ∂T ∂y

*+

∂γ µ            ∂T         

       w    &    

,

  -  

  .           



 -      

 

     

   &

   

k∆T = −α2 (T − Ta ) 

α2



u=v=w=0

**

                

$

     

  



      

    

           

  *!

    /  0        $

  ) 

      1          



   

                                                          

 

                      χ             ! "                                               #                   $          % & 

'                               $                                                         ( '())             

)                          *             

' + ,           %            ,-./0  1                    1    

                 2            %                    



            +    dt Co = umax % dx

 umax  3      3         dx

    )                      +                 2.5 4      0.02 mm  3       1 ms−1  4  3             5 × 10−5 s

    5  

      $         2      678               

   -*1    

   

             

       '         3

                                     3                9       3    2  3 A     b    

     4   3 A  

             



          

    

  

                               x     y ← Ax  yi      

 p1  Aij = 0  xj     

 p2   p2    xj  p1       

      x      

                     

       ! 

            

            !"#       !"#  $%&&'( '&&&& &&'&&) *++&' '&&&& &&'&&)  ,&&&'%% '$,$( $('$$) (*+' '$$,+ $$'(%) * %+'% '*($% %+'$$) %*%'+ '%&$ $,') % +'&& ('$$ $$') $,,'$ ('*$, $'+$)  $('&$ &'*,% %(',) *(' $'$,%, %'$$) , %*',& '%%+* ($'*)   "          #!$%&     %         '           (#!$%&)  

      %  

                                     

            

   *+, (-%")         (0.0005%)      100-    10.6.      &/       ( 0"&1 (C), (D)  (E)) '  '   '               */    1s ( & (A), (B))   */             2.3 mm  0.6 mm       &/       2.07  0.58            2.25  0.52           -                */        2 2                                             ∂γ )          3       ( ∂T       1800K − 2000K 



   

  

           !     !  "#"$#  % & '( !  )  ( *  !     +       ,-

                 

        (0.0139%)                                         !  "  "  

       #                        "    $$        

%          $      &' (   

        )     y = 1.25*             + Us = 0mm · s−1 )(*, 3mm · s−1 )!*, 6mm · s−1 )-*  9mm · s−1 )*     $      

 $ 304 )(./*       0.0139% ' (    + I = 100A U = 10.6V                  

             



             

!" 3mm · s #!" 6mm · s $!  9mm · s ! %    %   &   ' (   )( Us = 0mm · s−1

−1

−1

−1

                                

   

2300K 

     

 

      



         



                   



     

  

   

         

    

  

          

         

       !                         

 

   

"             

     

     304      #

  *

+       ,    % 

   U T   %   % (m s ) (K) (mm) (mm)  --( .- -)) ) -.( ./ /)0 -.( 0 -00 . 0 )( -) .-- .-//) )

(mm s−1 )

max −1

max



   

    

     

                              0.0139%                                       

                !          z     

 "      

       1 s                         #     50 K   $    %   25 K   $    %        

    2300K &            ∂γ    '     ( ∂T )  &       (   



            

            !         )  t = 1.0 s& t = 1.06 s& t = 1, 12 s   t = 1.18 s  

    #

!     *   (        &              

   (  4 mm&  #

      

   1 ms−1    +         ν = 6.81 × 10−7 m2 s−1  , &  -    Re ≈ 5800       

& 

     &  #

    ( ≈ 1 ms−1           #

       #

        *   T > 2000 K 

+ +         

         "         )  . ! & /& 0& 1   &          

        &             x = 0

             



                                ! "   "#$

                                                 

                                                 

             ! "                             #$         %           ! "             #$              &$   '              ! " (                  "                    



   



                                              !" #$ %&% ''     ( )* + , ,  - . /                   !'$ !'& 01 ''' ! () + , 2 34. )+          5,  + 6   %"#$1&  ''! 1 ) (  +   ,  7 , 75 , +       5,        !  1$ & 88  0 9 :  -. ; 3 , - <+  ,     +7 , 75         5,        %"#$ 1& 0 88 % 3 9 )++        )+          =   '%1  9  ,

2 ; .  , ) (  ,    + ,  ,   5,  5         "!#$ %!& ! ''% ' 9  ,

) ( , 9 9.     ,  7 , 75

, +      5, 5+ 6 +    "   # '"#$ 1& ' / ''0  8 ) >  , ) (    ,   + ,   ,   ,   5     $  ;$ % & 1 888    ?+ , 3 -   +   ,  +,   + 

, 7 , 75  6     5,      $ ;$18'&1 0 2  ''%    - .   : @   , ) 9.    , A     6   B  6 ,C  5,  +        !  %   %&0' ''   ) D + 

: E  9 , , 3  6, )+,      ,   5,     $ 8;$0!1&01' ''  ! < F , ) ( ,   ,        5,, +  88      $ 8"#$!&!' 2  '''  1 < F 2- E 2 - , ) ( E6       5,    ,     , ,       +    %'"!#$'%3& 3  888  0 D: F , D +  )+,   ,  +     , 7 , 75       5,   ! &  ' # ! &  1$ 8!0& 810 88  % ) < + 

3  6, 2 G. , )$  -,  ,6  ,    ,     5,   8!         A        (   0$1 8&1 ' ''   : <+  , ) ( -,    +  ,   ,  ,   5,      1      $ " #$ 0& % / 88 

                                

      

               !      " #   $%     &'(     %     !    % # $   #    !   )*&   +   $   $   %          $   %    !       ,%  #

 

                                                               !           "    !    ##$$$ !     %&      '    ()# * + 

    %$$%  &#%$$$ *          ,,)   )#$- * +           

      "

   .  /++0    ! + 

     !       !       1 %2  2(          3                                       "  

  + 3     .                     "           4                                

    "  54     / 60            

 !        -   .  $ ( %  )%% .-     /0).



     

                                                      

          !   

 "

#  $        

   !  



     "     

 %&'(       %)(  *    !                  "     %&+(  !              %&,(         

                 %&( -     "  !              

      %&.(           %/(       

     

0

      

        1      

    %&2( #          "          %2( -         

                         %&)(    %'( #     ##3      "                                 $  %4( 5      $        %,(

  6      1                    ##3           #          

 !                    !   78

    5 9      

  ':++           

   !         "   

     5  !     

      #     

       );  ;/              

        6                !       



t ∈ [0, te ]

   <     

         8 

D     

 L    6         x ∈ [0, L]  

t0             ρ    v  =   q = ρv   p    T     x  t #      x       h(x) #          %&& &;(



         



                                                                           T (x, t)!               "        #$%&! ∂t ρ + ∂x q = 0 , $ λ(q) ρv|v| , ∂t q + ∂x p + ∂x (ρv 2 ) + gρ∂x h = − ' 2D p = γ(T )z(p, T )ρ . ( ) γ          T !         z(p, T )               z = 1 *    +, !                -  . -   -.-! z(p, T ) = 1 + 0.257(p/pc) − 0.533

(p/pc ) , (T /Tc)

%

 pc   Tc     /            " !    *      !     0  λ(q) '               12! 1  = −2 log10 λ(q)



k 2.51  + Re(q) λ(q) 3.71D



.

3

) k           

   !   η            ! Re(q)   4  ! Re(q) =

D q ≈ 106 . η

5

6     $1(   /    ! A = π4 D2 !   1/A 7        !               ! ρ ← Aρ 28!         ! q ← Aq 28!   γ ← γ/A!   $   (      '           2      ∂t q   ∂x (ρv2 )                           9  #$%&      v = q/ρ        ! A∂x p + gρ∂x h = −

λ(q) q|q| . 2D ρ

+

  

             q  pin  pout               



      Operating Range of a Turbo-Compressor 50

eta_ad = 0.60 0.65 0.70 0.75 0.80 0.85

45 40

n = 6500 5850 5200 4550 3900 3250 measurement

Adiabatic Head

35 30 25 20 15 10 5 0 2

4

6

8

10

12

Volumetric Flowrate

                           !"     Nth = c1 qHad 

c 1 , c2

κ = c1 q c2 z(pin , Tin )Tin κ−1

  

Had

1

pout pin

 κ−1 κ

        

2 −1 κ

.



   

                   

       

                

              

  

n

     ! 

ηad

        "     

  

 

q



Had

   

#                  

$

B = c3 N b(n, N )  

b

N

          



   #       

   &'    

0.5(

B

N = Nth /ηad

 %  

  

  

     #    !  )       

            * 

       





           ! 

 #      

B = c˜3 Nth

 

c˜3 = c3 b/ηad 

     +   %        

             

         





            c ∈ (0, 1]          

 

pout = cpin ,



qout = qin .

              pout = pin ,

qout = qin

(open) ,

qin = qout = 0

     

(closed) .



          

     ∆p ∈ [∆pmin , ∆pmax ]   

pout = pin − ∆p ,

qout = qin

(open) ,

qin = qout = 0

(closed) . 

               G = (N , A) 

        N+     N−       N0    N = N+ ∪ N− ∪ N0 .

 

                 !  Api 

    Acn   Acs   Avl     Arg  A = Api ∪ Acn ∪ Acs ∪ Avl ∪ Arg . 3 45 6 3 45 6 passive

"

active (controlled)

#          a ∈ A          i, j ∈ N   ij ∈ A$ %    &         i  j $

           '                    te  costcs = ca Ba (t) dt . ( 0

a∈Acs

    )             *  '     +     &               t > te $ ,+    '                      t = te         $ -                                     '                +      La mmin ≤ ρa (x, te ) dx . . a∈Api

0



    

   

                  

       

                                                   !  "

        Γa = {0, La} a ∈ Api      

         a ∈ Api  #     I = [0, te]    $        ΓI = {0, 1, 2, . . . , te }             

       ∆t = 1 #        x = (x0 , . . . , xt ) with xt = (pt , qt , st , ut ) , t = 0, . . . , te . %& '      t

       pt = (pit )i∈N   (  qt = (qit , qjt )ij∈A        

   st = (sat )a∈A     



     (t−1, t)      

 ut = (uat )a∈A 

     ) e

sijt = ρjt , ij ∈ Api , uat = ∆pat , a ∈ Acs , sat = Nat , a ∈ Acs , uat = ∆pat , a ∈ Arg .

%*

+     sat  uat    # ,-.  $            .           a = ij ∈ Api  t ∈ {1, . . . , te}  t− = t − 1) ρjt − ρjt− qjt − qit + =0, ∆t La 2 pjt − pit hj − hi λ(qjt ) qjt Aa + gρjt + =0, La La 2Da ρjt pjt − γ(Tjt )z(pjt , Tjt )ρjt = 0 .

%/

01 0% # 2 

    

  a = ij ∈ Acs   Bat = c˜3a Nat

κ = c1a c2a c˜3a qjt z(pit , Tit )Tit κ−1

1

pjt pit

 κ−1 κ

2

−1

.

00

#     3      

     4                 Γa  ΓI    costcs =

 a∈Acs

ca

te  Bat− + Bat ∆t , 2 t=1

mmin ≤

 ij∈Api

Lij

ρite + ρjte . 2

05

#

      $     

  (    $         j ∈ N0  t ∈ {1, . . . , te}

         



P2 P1

CsA

Vl1

CsB

CsC

C3

Rg1 C1

C2

        

qijt =

i: ij∈A

     





qjkt .

k: jk∈A

x0 = x ˆ0

       

 

  

              

i ∈ N+ ∪ N−    ij ∈ A : i ∈ N+  j ∈ N− 

         

    

                  !

     

     "# $%  &     ' () *  !         

 

     

 

+       , -"$      !,

  ./   .1/

       ,     !          0    ,

    *    &       

       

   

 

  

$        23455     324

 

        

                

52 &            62 & $  147      

12              8   

     

               *

  !  7              

a ∈ Api La = 10 km * -"$  5597    56 

  55:2 

 

   

     *         



;        

      ,         

  &  5:46 <      452

    3           

10−6 

8           0      +            &   

       =    0       ,  



     0   27>2245>22 +     



     

 

   



Cs A Cs B Cs C Rg 1

20

Cs A Cs B Cs C Rg 1

20

15

15

10

10

5

5

0

0 0

6

12

18

24

30

  



36

42

48

6

12

18

24

30

  



Cs A Cs B Cs C Rg 1

20

0

15

10

10

5

5

0

42

48

42

48

42

48

Cs A Cs B Cs C Rg 1

20

15

36

0 0

6

12

18

24

30

 



36

42

48

6

12

18

24

30

  



Cs A Cs B Cs C Rg 1

20

0

Cs A Cs B Cs C Rg 1

20

15

15

10

10

5

5

0

36

0 0

6

12

18

24

30

36

42

48

0

6

12

18

24

30

36

                  !  "                                                                                                              !!        "        

             #              $                       %  &          

         



                                                       !"        # $    %               

     &          '  %          " !                   $           ! "   (                   %   %                %      %        %          %           ) $ 

       

  *  +    ,    %    (      -       ( .         %  #       %      

       /             %     %    %       (% % %       "     %      0             #

        $       %   % %       %       %      %   1          %     2         %       %     %    (     (              3           &      $    # %       %    (      &         %          

 '        %* %         *#    % %%#    

                   &  / %        245 %    %         

   '  &  (       &  6  ,7 8    523 ,7 9                      )  6      %   %     :  '        5 8 7   8 1 7 *     %       &             $     %        -     



     



   %  +

1 #    $      %

   +  1  #

               

               !

" #  #$                   %$         ! "   $%                             ! &   '() *& *+  '  (! , $$          

  ! " #       $        , -   .$$/  #0 $$1               ! %  & ' &      ( )   )         - - 2  3 (  4! !  "5 !  - 6  , 7  !  8 $$  + 0#$  " # *   +  '   ,      9 2 :!!!3 !;  $$ $ "  -              ,  <;! = >! $$  %   & ' (   &%) "               )   &! 4!   4  *  . /  +#01$1       * .           $ )   +% ?   6 &! <;! = >* !  $$  +               $      &! ! 3  !    3 !    1 . /  1 01 ,       ,  8 1  -  %/             '$      9 !!6 '?-7 *   

 -   & ' ( !         '   *  ! 3     :6!  -'  ; ; !

    -    3 (   ' @6!  %  +%01  +  , ' "   "      "   !  0 )   , !      "! !!*   1 , , .  / ! !     '     ' 

/      /      1 .$$$/  +0 1+            

$  $    )  ,      . 1/  1 %011

    !    ,  .         %$         ! "   $+

                              

 

    

 

     

                                       !           "    #            $     %                                        &      !         "         '   '      (   )   *! $                       "     #                                #                                 +                 $    !                ,$                      



   

         

            y = F (x)                                                   vi−n = xi vi

= ϕi (vj )j≺i

ym−i = vl−i



i = 1...n



i = 1...l



i = m − 1...0

                F                ϕ                                    v               i ∈ V ≡ {1 − n, 2 − n, . . . , l − 1, l}              G = (V , E )      j  i         (j, i)     v     v   ∂ i

i

i

(j, i) ∈ E

⇐⇒

∂vj

ϕi ≡ 0

j

⇐⇒

j≺i .

                   

          

    j≺i

=⇒

j
        G            n   m                          v = x  j = 1 . . . n  v = y  i = 0 . . . m − 1  x = (x , . . . , x )  y = (y , . . . , y )    

       

          j−n

1

j≺i

=⇒

j

l−i

1

n

  j ∈ 1 − n, . . . , l − m

          



m−i

m

  i ∈ 1, . . . , l

 

ni ≡ j : j ≺ i

   1  2  ϕ     

 

          

               n        i  !  

   F (x)          "   #      $        ϕ : Ê → Ê  i

i

i

ni

           



Ê

          Di ⊂ ni     

             

cij ≡

∂ ϕi (ui )  j ≺ i ∂vj

 

    ui ≡ vj j≺i ∈ Di                    F              ϕi               (i, j)         cij = cij (x)              x ∈ n           

                                                     ! "

Ê

  v1  v−1 ∗ v0 v2  exp(v1 ) v3  sin(v2 ) v4  sqrt(v2 ) v5  atan(v2 ) v6  v1 − v2   =  (v−1 , v0 ) (v3 , v4 , v5 , v6 )   =   c1−1  v0 c10  v−1 c21  v2 c32  cos(v2 )  

         −1 c1

−1

c 10

c21

1

2

c61

c 32 c42 c52 c6 2

3 4 5

0 6 c42 c52 c62 c61

   

0.5/v4 1/(1 + v22 ) −1 +1

! "#    

               cij        ! "                              #  $             cij     ϕi    $   %   cij ≡ 0  j ≺ i     l × (l − m + n)   

 i=1,...,l C ≡ cij j=1−n,...,l−m           (       

&"'



   



c1−1 ⎢ 0 ⎢ ⎢ 0 C =⎢ ⎢ 0 ⎢ ⎣ 0 0

c10 0 0 0 0 0

0 c21 0 0 0 1

⎤ 0 0 ⎥ ⎥ c32 ⎥ ⎥ c42 ⎥ ⎥ c52 ⎦ −1

.

  C ∈ Ê6×4  8

         c62 = −1   c61 = 1     6                  (x1 , x2 ) ≡ (v−1 , v0 )   C = C(x)            Ê6×4          6       C       6         cij                                

         F : Ên → Êm        x ∈ Ên            Ên  Êm      Êm×n        F  (x) ∈ Êm×n          F  x                       ej   j = 1 . . . n    

Ên   ei   i = 1 . . . m     Êm                  F      

        F  (x)       aij ≡ eTi F  (x)ej ≡

∂ T e F (x) ∂xj i

           c˜ıj˜            P ≡ (i1 , i2 , . . . ik¯ )  (ik , ik+1 ) ∈ E     cP ≡

#

cij =

¯ k−1 #

cik+1 ik

!"#

k=1

(j,i)⊂P

     $%    &'( am−i,j ≡



cP

.

!)#

P ∈[j−n → l−i]

* [j − n → l − i]         

              0 < j ≤ n   0 ≤ i < m $            

           



                          

                    

    aij    

                              

      4 × 2     8                                                

       !                                   "  F  (x)         1 #              "   !   F  (x)    $                                         %&' (       $        " 1     4×2     !                    c1−1  c10  c21  c32  c42  c52  c62   c61    )      $           !               *     c21 = 1  c62 = 0     5        )                X ⊂ n               D = dom(F )          $  # C             

Ê

Ê

C:X

−→

Ê l×(l−m+n)

.

    C       *                        {cij (x) : x ∈ X }             X ⊂ n  (                     x                  #            +     ,  *                              

                           ϕi       cij  #                    cij            

Ê

C ∈C≡

$i=1...l "  cij (x) x∈X

j=1−n...l−m

⊃ C(X ) .

-   C                   C(X ) . $ C              X

   #                 C      dim(C)      dim(C(X )) ≤ dim(C) ≤ l (l − m + n) .

#        

            ϕi (vj ) = γi ∗ vi  γi /           0     γi 



   

                    γi            

                                                      G      n    m       C ∈ C      

B C= R

 L ∈ S

Ê((l−m)+m)×(n+(l−m))

.

!"#

 L          det(I − L) ≡ 1    

C    m × n    $                    %          &     '() $     * +   !,#   !(#       

 i=1...m A = aij j=1...n      

 −1 A ≡ A(C) ≡ R + S I − L B

.

$                ',) -     A         

A:C

−→

Êm×n

          det(I − L) ≡ 1      

   L $    A(C)  C ∈ C       

        

A=

"

$i=1...m  aij (C) C∈ C ⊃ A(C)

.

j=1...n

$ dim(A)             A(C)  C ∈ C

  .      /   %  0        

  F     dim(A(C)) C

 

            







   





    

  

G

A(C) G 

      

scarce(G) ≡ dim(A) − dim(A(C))



   



C

 



.

dim(A(C)) = dim(C)

1                            C ∈ C         

     A ⊂ m×n  12                  A(C)   3     C 

Ê

           



                                    

            

   

dim(A(C)) = 5 < 6 = dim(C) "      #   A(C) 

      !  

C

       

 $

            %   &       #                      '  (                  y˙ = F  (x) x˙ ∈ m   !   x ¯ = y¯ F  (x) ∈ n  x˙ ∈ n      y ¯ ∈ m       %     $  )  

Ê

Ê

Ê

Ê

Ê

            y˙  x ¯   $  x ∈ n   (    x ˙ ∈ n      y¯ ∈ m  *    +  ,  ,





Ê

Ê

x ¯         # 

       ' - .      

1



−1 y˙

       

         & 

x ¯

 $  (    

           "        

6

 $&

           

          #                "      

                

 $

           /  -

             v˙ i−n v˙ i y˙ m−i

   = x˙ i

 i = 1 . . . n P = cij v˙ j  i = 1 . . . l j≺i = v˙ l−i

 i = 0 . . . m − 1

v¯l−i v¯j x ¯i

    = y¯m−i

 i = 0 . . . m − 1 P = v¯i cij  j = l − m . . . 1 − n ij = v¯i−n

 i = 1 . . . n

'        



˜ G

G

     /  0

 /  -               

 $

2          (−1, 1)    1 %  

   (       !                 /     , 1  .  2     3                



   

                        



3 c˜31

−1 1

c˜10 = c10 /c1−1

c˜41

1

c˜31 = c32 · c21 · c1−1

4

c˜51

c˜10

c˜41 = c42 · c21 · c1−1 5

c˜61

c˜51 = c52 · c21 · c1−1

0

c˜61 = (c61 + c62 · c21 ) · c1−1

6

        G˜ 

         



   

C˜ = T (C) ∈

Ê

5×3

  

T : C → C˜

Ê6×4   

    

˜ = A(T (C)) A(C) = A(C)       

C ∈

 

.

     

T  ˜  dim(C)

                     

   

    

dim(A(C))

C˜ = T (C)

      

            

         !           

    

    "    

          







   

    





x ¯              

   

C˜

                     

  

l−m

          #     

 

                        

dim(C)

$   

i

   

(n + i)

 

                   

 

  

           " 

                               " 

       

l − m    ≤ 2 ∗ dim(C) % 

            "         

       

G        C                ˜   C˜            C

                   

     

C ∈ C  #     A

  

             

           



                C ∈ C               C˜ = T (C)                                                         A             l = m                                   C˜     T             C  ⊂ C   A(C) = A(T (C))   C ∈ C  .      C   C               T        C˜ = T (C)           C  !       C˜ ≡ T (C) ˜ . dim(A(C)) = dim(A(T (C)) = dim(T (C)) ≤ dim(C)

          C˜      "               #

          " F  (x)                  $  y˙ = F  (x)x˙  x¯ = y¯F  (x)                T   dim(T (C)) = dim(A(C))     %  

 A : C → Êm×n           "     r ≤ dim(A) ≤ m n &       X   C                '()

         

Ê

 A(C) ⊂ m×n            r            T : C → C  T (C) = C         r      T (C)     

dim(A(C)) = dim(A(T (C)) = dim(T (C))

C∈C

.

!         "  A(C)          r             *  +               

         

    !           A           ,   +                           C  dim(A(C))           +           % +           



   

          C ∈ C         T : C → C˜   C˜   dim(A(C))         A(C) = A(T (C))       

T

       T (C)       F  (x)           

    

    

    

          

T

        

           

 

A(C)

 

                         

A(C)

A(T (C)

       

                 

           

m n = 8       dim(A(C)) = 5        

 

T (C) ≡ A(C)     dim(C) = 6  

  

     

      !          "      

(j, i) ∈ E 



     

  #

     

 (j, i)  E      chj += chi · cij  h  i

     

 (j, i)  E      cik += cij · cjk  k ≺ j 

      

 γ = cij = 0  chi ∗= γ  h  i cik /= γ  k ≺ i

      

 γ = cij = 0  cjk ∗= γ  k ≺ j chj /= γ  h  i

    

 (j, i)  E        (k, i)  cik = 0 ckj += γ ≡ cij /cik  chj −= chk · γ  h  k, h = i

    

 (j, i)  E        (j, h)  chi = 0 cih += γ ≡ cij /chj  cik −= chk · γ  k ≺ h, k = j 

            h

h

+ j

j

i

i

+ h k

k j

+ j +

i

k

h i h

k d iv 1 j



k

k

i

j



v di

k

h



k i



h



h

k

i

k

k

j

h



k

j

h

v di 1

i

div

h

h

i j

j

k

h

+

h



h

k

h

j

j i

− k

k 

i



+ h

h k

i



k

                (j, i)





   

            G    

   ˜  

     C       G˜   C˜    A(C) = A(C)                {−1, 0, 1}                           G˜   

         G                                                +   −                           cij          ∗   div              (j, i) ∈ E              (i, k) ∈ E                                                             !           

    "    #$% &     #'%                    

    (   )              *           +    (j, i) ∈ E       (k, i)      ,

 *               ) m = n                   F  (x)x˙ = y˙           x˙ ∈ Ên         y˙ ∈ Ên  &        -           "  #.% &               

 

        "                       "                                   

      

                                                                                                                                

/           "                     0  1 2   3 × 3     3  4     6 + 5           

           



    9                           2 × 2                             (j, i2 )  (k2 , j) i0

k0

i0

k0

j

j

k1

i1

k2

i2

=⇒

k1

i1

k2

i2

       (j, i2 )  (k2 , j)

           G  G˜                                      !          2  "     #   (−1, 1)     #         G˜     $                                     % −2

3

−2

1 −1

1 4

−1 −

2 0

3

4 2

5

0 −

5

       (−2, 2)  (−2, 1)         (1, 2)

         %         (−2, 2)     c1−2 = 0 &                    '            (1, 2)                 

1 "                (          (        (2, 3)   (1, 3)   ' )                  * (−2, 1)



   

−2

+ 1 + +

−1

−2

3

3 1

−1

4



2

2

0

5

4



0

5

     (2, 3)  (1, 4)        (2, 1)

     10             8    (−2, 1)  (2, 4)                              1    Ê3×3          8                      ! "    !                                                     !  −2 −1

−2

3 + +

1 −1

4

1 div



1

v di ∗

2 0

5

0



3 ∗

1

4

2



div

5

       (−2, 1)  (2, 4)

#        v(t, u, w)  (u, w)     $   t      % t u  w      h = 1/˜n   n˜ > 0    tk = k h ,

uj = j h ,

wi = i h



0 ≤ i, j, k ≤ n ˜ .

"             v(t, un , w) = v(t, 1, w) = v(t, 0, w) = v(t, u0 , w)



v(t, u, wn ) = v(t, u, 1) = v(t, u, 0) = v(t, u, w0 ) .

&        $          ! 

           



vk,j,i ≈ v(tk , uj , wi )            

uk+1,j,i = fh (tk , uj , wi , vk,j,i , vk,j−1,i , vk,j,i−1 ) vk−1,i ≡ vk,˜n−1,i vk+1,j,i      

 

vk,j−1 = vk,j,˜n−1   v  

.

       

  

     

 



                              

  

 ! 

n ˜ = 3

"        

  v0,j,i j=1...˜n,i=1...˜n

p = (i − 1) ∗ 3 + j



       

  #  m = n ˜   vn˜ −1,j,i j=1...˜n,i=1...˜n                n ˜ 3      dim(C) = 4˜ n2 (˜ n − 1) 2

      

       $  

            $  n ˜ 4      %     &            

dim(A) = n ˜ 4    

 dim(C) ≥ dim(A(C))    





1 2 ˜ /(˜ n 4n

− 1)

) ˜ − 2]2 scarce(G) ≥ n ˜ 4 − 4˜ n2 (˜ n − 1) = n ˜2 n       %  

   

n ˜ ≥ 3



  

.

'   $ 

  #                  

7

8

9

4

5

6

1

2

3

              (                       ) $    &  *

 $          

        

         

v





   

(uj , wi )              3˜ n2 (˜ n − 1)   

      n ˜ 2 

   

 

          

                                   

  

           

               

                    

n ˜ /3 ≈

√ n/3

               

                  

            

 



           

      

F

         



                       

 !       

   

  

  "#$ % & ' (  

      ( )*  + 

½½ ,#-./0( 1.2-3

         * '7              )* #--3(  #/3 2 #/-  9  (             

    ( +  #- %   *  )*(

"4$ % 5    6(

"8$

  ( 4::: "/$  9  (

!  "#    (  

*  ( 4::8

   $  %      ( 5=>:4(     3    5  

";$  9     < + 

(

 = 5  )  ( 4::4 "3$

   &  $          

  (

".$ *  (

(    ? @     A (    (

     , 9     9 % 5 (  0( )*(    ( 

( #--#(  #2#3

%                  '#  (  ?  (    )   5 (

"1$  < (

? <     ( 9 ( #--3

      

    

 

      1    2    3    

 1 1 2 3

                    ! "#  $   %   &' ( ) *+, --. / 0 1 .2          3 0 "#  $  &10 %   &' ( )  4  .5  &10  

 " 6 0   0 0   6      7  8  9      0    6 &  (          7  04 (   7    0  7 7    0 7 &   7    0 04

 

                           !         !     

      

 "       #          

                           #  $         %     

   %                            

   %  &             '           

                                        (     

  % %       

                      #                   %        )*+ ,             -.

     #         %         )/+                   #                    %       %    



         

                           Tc                                                                                  

                         †   †  † HHHM = −t ciσ cjσ +U ni↑ ni↓ +gω0 (bi +bi )niσ +ω0 bi bi .  ! i,j ,σ

i

i,σ

i

   "             t   #      U $ c†iσ      σ    %   i  niσ = c†iσ ciσ      &           '                                     g = εp /ω0           εp      (†]    !  ω0                bi          !   (    )*+                                  , -!                             &                  ).+                  )/+ 0 "            1               #'%!           '%!      U ! )2+

0                                                       3 !   "       4 5'!     4   '-67!     - #                                                    4  '

"       

                 5'                           

         

 



          

       {|Φi }                   Hi,j = !Φi |HHHM |Φj .



          Hi,j                                      !    !  

   

          "         !         #$% & '()    *                   +,+           HHHM   !           

     !    !     - 

      ! N = 8  16      *               &             !          ! .        % %       i ni↑ +ni↓    z          12 i ni↑ −ni↓                      !                        {|Φu,v = |u

el

⊗ |v

ph ;

u = 1, . . . , Del ; v = 1, . . . , Dph },

/



        

                 Dtot = Del ×Dph                    |v

ph

=

" $mi,v 1  b†i |0 m ! i,v i=1 N #

ph ,



mi,v ∈ [0, ∞]

            %      M               i mi,v ≤ M   M             Dph = (M + N )!/M !N !            !        M ω0                 "! # $             HHHM  E  M ω0              M     %           {t, U, g, ω0} &    %                  "'        N = 8     M M   Dtot = Del × Dph ∼ 1010    !     (                             "'        $     "'  %   )             )               *+*     )    *+*                          "! ,         -. /0

           '*12  -#3 ## #40         "'                       H   5 6   7               %   '*12   '*12                                                  8 4

   

 

 

 



             !  "     #       $   %   &  !'!

         

           ρii =





   



∗ ψij ψi j ,

j

 i  j      ⏐ :                   ⏐ψ      ⏐ :  ⏐ :⏐ : ⏐ψ = ψij ⏐i ⏐j .



ij

        !"      ρ                 #    $$                    %       •    &      '          & l  '  m          •                %               & l + 1     

 '    •      %                & l − 1 %            ( $ )            & $                 *        +,+    $                                         #$     $ $        

  -                 '                $       &             .         /0                 !"$ ¯ l+1 H

|

|

¯ R H l −1

                  !" H¯ l+1  # H¯ lR−1    $ %  #  &  $ % '     ## #    (  $" 

               m     '  $                   m        $ 1     m      m       

   $ 2     m        



        

              m = 500                            !! "#

                       $       %            

 &      '( ) !               

 

          !" # $ #   $%   #  & 

   &% '#  (")  '%   % & *# '# +,-! # ,--. %% /  '#  

 0 %   !0   /  %  '%  12  &%3 % !0  

4"-  % %'  /*  5  # ' % 6 1    

 

   

        

0+" 78/ 9 : ; $<

61

;1

4"-

 670%'1 : $<

9

9

"-

0% = ( :19 $<

92

1

"-

!'  ;2 :8 "$<

2

19

4"-

!0   ;9 :6 "$<



12 :6 1<

4"-

      !                          *        +        ,   ,       '-) .             /0              1  1        *                 '2) .            /0           $       "3     4 -1- !        U = 4  m = 2000# $ -        $5      6  4           

/ *               7    68 *    +                             

              &          .    "#

Performance [MFlop/s]

         



2500

2000

1500

1000

500

0

90

M

IB

p6

(

HP

0

67

G (1

el

Int

P

Xe

D on

G 2.4

(

ir

nF

Su

00

8 e3

I SG

)

Hz

Hz

Hz

rx5

)

)

)

)

Hz

G 1.3

(9

M 00

00

Hz

M 00

(5

4 n3

igi

Or

                         !"                                        

       !                      "       #         $ 

         !                   

  

$  %& 

                

'               ( (    )*   

     

        ($                  "          +              ,  -                                %.  /.         ,    &               

     

)0  1* , U = 0     &    )&#*    

     gc (ω0 ) $             ω0 → 0 2 &#    "       3            P = +1 4 #       

   



      3          

%.          5     g = 0  



        

                            !

 

P = −1

  

 

!"

##         

Peierls Insulator

Mott Insulator

u/λ >> 1

∆c = ∆s > 0; P = +1

∆c > ∆s = 0; P = −1 u/λ << 1

CDW

SDW

               u = U/4t  λ = εp /2t = 2αg 2  α = ω0 /t $         %           

 

&    

 '( )(* ) +  # * 

   #         ,  &      #   # -   .   +       ,     #  ,    .  /    ,  #      # ,          ,  //       , #  &           % †  ,  .   Ekin = −t! i,j σ ciσ cjσ      0 #    

U

 + 1 

  0!" 



    .    *    #  

Ekin

!"

  ###

 , #  &    # $     

                

#  # u/λ*              * , #       $       #                       



2 

 # ,          3!       4   *            *     

    5   " # 5 

 #  .  5  , 

Ekin     +        ,  &       

             , 6

Sc (π) =

1  1 1 (−1)|i−j| !(niσ − )(njσ − ) 2 N i,j 2 2

,

7

σσ

1  Ss (π) = 2 (−1)|i−j| !Siz Sjz N i,j 8   ,

Sc (π)  Ss (π)    

,

Siz =

1 (ni↑ − ni↓ ) . 2



+ 7 ,      / 

   4,  *  ,   0!"  . !" 

     &        U   g  ω0 * &

         

ED (M=24) DMRG (np=7;m=600)

0.5 -5.0

ED: U/t=2 ED: U/t=4 ED: U/t=6

-6.0

DMRG

Ekin(ep=2,U)

Ekin(εp=2,U/t)/Ekin(0,0)

1.0



-7.0 -8.0 4

0.0 0.0

2.0

8

12

16

4.0 U/t

M

20

24

6.0

8.0

                U/t   g 2 = 2   ω0 /t = 1    ! "#   #$%&    Ekin  ' U   g2 = 2   ω0 /t = 1( )  "#          * ' !  M        !       #$%&      np = 6 ! *    m = 1000  !         )  +       ,- ! ./.

                                   !     "#   #  $  "# Sc(π)   

                   %    Sc (π)       N → ∞ &      #                              #       %                  %   %           ' (        )     *  %    '          N = 128(  *         +                    *           ,-   . ,-    "/%   !     0                 %           +    +     $  1 0     "/      0  #  #   2    -&     . ,- *  %           

$  3           4  5 -&       "/      



        

0.04

1

U/t=6

U/t=2 0.8 0.03 0.6

Sc(π)

Sc(π)

-2

1.0×10

0.1

0.02 0.08

Ss(π)

Ss(π)

-3

0.4

7.5×10

-3

5.0×10

-3

2.5×10

0.0 0

0.2

0.05 0.03

0.01 0.1

0.05

0

-1

N

0 0

0.05

0.1

N

0.15

0

0.1

0.05 -1

N

0.2

-1

0 0

0.05

0.1

N

0.15

0.2

-1

            !"             #    $   %& ! "  & !  "    m = 1000  5 '  (       

(  )     N = 128  (  m = 800   '       (  *# 

              

               T = 0 σ reg (ω) =

π  |!ψ0 |ˆj|ψm |2 δ(ω −Em +E0 ) . N Em − E0



m=0

  |ψ0  |ψm                % †      E0  Em        ˆj = −iet iσ (ciσ ci+1 σ − c†i+1 σ ciσ )             !       "  #                   $%      σreg (ω)                        %                                                              &$'(   &&$'(                  )*+   &&$'(                 ,  -       η         !      η  .            η             &&$'(  /&     η        /& 0     %   &&$'(                                "           ,- &$'(   1223      4  5                              ω                                               ω0    &&$'(    " #     

         



              η          ! "# $    %%$&     '          (( $)  &'$

reg

σ (ω) [arbitrary units]

3 ED DDMRG η=1 DDMRG η=0.2 DDMRG η=0.1

2

1

0 0

1

2

3

4 ω

5

6

7

8

          N = 8     U/t = 6 g 2 = 2   ω0 = 1   !   "    m = 200  #  $ %   # η = 1 η = 0.2   η = 0.1   &   η " "   

"  &'()    $     %       *#  %    # + # ,

 *  +                          , -. %! -%#             /       .        0# %$&  /     /    /        !        1              0    -% 2  %$&     3   /  4$     +            -%     % %$& %%$&#/     /   



        

                

               

                                                       

  

                                                             !  !          "      #       $                               "  #      

  %    &&'  &'( )*   *  (  +  ,&' ),   -      +  !.&$ )!  "  *   *  $ +            / &&'0 )&    &   0     +  '12 )' 1   2 +          !.&0     /         2   *   0  !  "   *   )( !+   )! 3+

                        !   "  #$%%%& $ ' ( )  ) * ! +    , -  ,.  / ' !    00 # 110& 0  233    4   +    )  5   ( !  /    $067$8 # 10&9  :     4    ;   <  , 5  <  5  $87$61 # 10& = <  !2   5  ,  < , 2 4  ,  ' 5 #+>&  0$870=$ # 181&9 !2   5  , $ < ! 5  ' 5 #+>&  0=07061 # 181& 8      !;   3      ?     5 ( )  $%67$ 6 # 116&    ,    ' @ /    A    5     ;      '    ! ! 5   $08;$=1 #$%%%&  ) )B2      C  3   ;   ?    ;  ;   5 ( )  00; 0 # 116&

         



          ! "     #$      % &   % '  ("   "  ) #  *+++(*+, -**+. *       ! /    $ ( $ $ 0 '1 % 2    %      ($   & ' 3    45% -'.0 % "   6 $  %      ' %  % *** 7(7* $ %(8% # 9% -7:::. :      ;   < 1        2   $ "  ) =

  7+>(7++ -**7.     ;   < 1 ?%       2   $ "  ) #  :>@,(:>,+ -**>. 7  < !         ;   < 1  2   $ & & "  A  % < 3!   3 9% -'.0 ;  (< 1  2  0 ? /  <   "  =       / ! $    <1(" !(&    B " ! 3 $1   ;    ** =    "  8  ,7 $ % # 9% -***. > ' 4!        ;  (< 1  2   $    "  " 9      <  "  ) #  +>+(+>, -**. @  % ' 4!   !      "2    ( %  ;   < 1  2   $ ?%    (<      ,   !   ?   "   C$ 2   &  ( ) 6  &?< " $  -7::. + ' 4!  ;    ( 1  2  (% $   "  ) #  :@,@ -7::7.    !    ? D      #B

   ?  # $ "    <

(       ; "  # >7(>> ,+7(,+> -7::7.    ! ? " 3$  < !          "( <

(       ; ' "  4 #  (+ -7::>. *   !    ? " 3$  < !   % ? D  #B (

   ?  # $ C (     ($  0 <

( )(  "(   &  %    -'.0 % "   6 $  %      ' %  % <  7::7 >>*(>@* $ %(8% # ( 9% -7::>. 7: < 92  ? C  %     ? ?     #  &   <

&    C  ;   "  ) =

   7:@(7: -***. 7 "  #   & 4$2 ? " 3$    < !      (   % $     (E   99     -7::>. 77 3 9% ;  ( 1 %         $ $(    /(     "  ) #  *7(*>: -**,.

                     1    1     2 1 2

       

                      λn ·  T (X, t) = qn (X, t))                            !    "# $  "$      !         

             %" !         &       !                  '(') *(*+ ,(,-!  ,(%                        !

 

                                                          !                                      "                #   "           "           $      %&'                  #      

            

$              (              )                    *  )                " "+



        

C0 ρ0







 ∂T (X, t) ∂T (X, t) ∂T (X, t) ∂T (X, t) ∂ ∂ +u = λ0 + λ0 ∂t ∂z ∂x ∂x ∂y ∂y

 ∂ ∂T (X, t) + λ0 ∂z ∂z

X = {x, y, z} u



    

z  



    

          

  

   

        nd  rd                  

   

   !          

 

 



   

           

  

 



Ω0

   !

  "     qn # $        

    %            

  %         

   & 

       



           



   

  '

   

 

  %   !      

 (       %   

    

   (                !    %

         

   !



  !   



      )   

( 

   

 





     

&                 

                     

    !        

   !      

     

     

X ∈ Ω0

           



                                

TL



TS 

  

       

          

     



               

                             



     

!                                   



      " #           

   

C0 ρ0

               $



 ∂T (X, t) ∂T (X, t) ∂T (X, t) ∂T (X, t) ( ∂ ∂ +u = λ0 + λ0 ∂t ∂z ∂x ∂x ∂y ∂y

!             

%

     

                                               

u

                         

       

         

(λ  T )

         &    

         !     '   ( 

 

 

q = qI (z)

    

            

   

     

     '               $

 )

α = αII (z)    Tp > Tcr         

        $



        

X ∈ Γ0 : T (r, z) = Tr ∂T (r, z) =0 X ∈ Γ∞ : ∂r ∂T2 (r, z) X ∈ Γ1 : −λ2 = q1 ∂z ∂T (r, z) − αn (z)[T (r, z) − Tmt ] X ∈ Γ2 : −λ2 ∂r ∂T (r, z) =0 X ∈ Γs : ∂r F m=1,2 ∂T1 (r, z) ∂T2 (r, z) X ∈ Γ1,2 : λ1 − λ2 = U · ρ2 · L · ∂r ∂r ∂z

1 ∂ ∂T (r, z) ∂T (r, z) = Ωm : Cm ρm · U · r · λm ∂z z ∂z ∂z m=1,2

      

                                               

             

             '   ( 

               ∂y∂ λ0 ∂T∂y(Y )  ' ( ∂T (Z) ∂                 λ 0 ∂z ∂z            

C0 ρ0



 ∂T (X, t) ∂T (X, t) ∂T (X, t) ∂ +u = λ0 ∂t ∂z ∂x ∂x



      X∈ X∈

Γ0 : T (X, t) = Tp ∂T (X, t) = qk (X, t) Γk : −λ0 ∂n

k = I, II, . . . , n = x

 n = y  

  Γ0   

         Γk                        k k = I, II, . . . , qk    !"        k           Co  ρo       

       #     "     $%                                 

    

            

∂T ∂T +w ∂t ∂z



T f +1 − T0f +1 T0f +1 − T0f +w 4 ∆t ∆z

= 0





            

 

z     e = 4            ∆z = u∆t 

            

z +

  

∆

        

   



∂T ∂T +w ∂t ∂z

  

Φe

0

T f +1 − T0f +1 T f +1 − T0f T0f +1 − T0f + 4 = 4 ∆t ∆t ∆t

2 2   T0f +1 − T0f Tef − T0f Φ Ψ + qof Φe (Ψe − 1) = e e f ∆t R oe e=1 e=1

∈ Ω0

  $ $ %0

 

=

=

T0f

+

∆t C0f ρf0

1 2  Tf − Tf e 0 e=1

f R0e

Φe Ψe +

2 

2 q Φe (Ψe − 1) f

(

e=1

   $    

$   

Ψe

Ψe = 1, e = 1, 2 $    Ψe = 1 $       

) * $      

      $ 

(z = 0)

  

   

$ $          $

Tp

'

&

     $   

 



!" # $   %0  $  $ &

C0f ρf0

T4f +1



T (X0 , 0) = Tp 

           +    $ #

(    $       $      

  $      

           



        

            Γ 1 

                     Γ1                                       ! "       #  $ 

  %        &        '        (            Γ1 

          

              %          $  )* "

q= r1

t1 − t2 1 λ1

ln dd21 +

1 λ2

ln dd32

$

+

%  T1            $        '$ 2             $        $ 1  1            

           



          1    2         3                      T2  λ1  λ2                                                                                               

    

Ì1 Ì2 Ì1 Ì2 Ì1 Ì2

  &   #  % $

!! #! #" #&$ # % ## # #%

" ! % % %& %  %# %

#$ #$! #"" #!%  # &&  

%% %$ %" %! $ $

# #! " %% $ "#

                                 '  (  

                         )    %% *       )   +, *        &  - .



        

            



     #    $ $% ' % #(%   )%  

           λ

# ρ

L S

 

 

&

 & 

& & & 

 !" !" !"3 0 0

 *'+ %         ,  $    %-  $  ./ $     $ &  %   %0   $ ./     "  %      $  1%    %$ %    - &   2  %    "   % $   3 % $  %    % $  %/%-     2 '/-  %    -  " " % 2   4.) .#   %%  %   -     ,  $  %-   ,% " %  5%   %0 6   2  (%/  %%     %  *"  %2%  % $ % %7 ,% 

2 "   & % 5  2  % %6   % 2 "  8& % 5 %6  %  $ $  %-  - -!  2 2  "  " 

   %%/%  $  %" 2 ""  $ 

 %0  Scrit  % %%$ $2" 7 Scr = Pp /σT ,

           



 P        σT                      σT = 1, 2  1, 5                  

             !" #$ %&'(     )crit = 163.636 × 10−4 m2                 ( Sliq (       * Sliq = Scast − Scrit (  Scast      (      176.625 × 10−4 m2 (  Sliq = 12.989×10−4 m2       ( Rliq (  2.03.10×−2 m. $           + #    ( Lcrit (  * Lcrit = Rcast − Rliq = 75 − 20, 3 = 54, 7mm.

      ,(   + #       ( Lsol (    !(&, -        ,.      +       

               



    (              

      (      + #             /                                 0 (   1 2          



         

                          !"#$  %       

 &"' (    )* + + ,           - "$$#   . /   0    &1' 2 - -      2 3 %     &4' 5 + , 2 ,                       0 . "$67 &7' (8

 (   22  .   9           

    :  1" ( "$$; &#' 0

5     8  0

         

   5  "$$6

                  1

1

2

2

                   !   " #     

   $         % &  '( ) *!  !* $  " #

      

  +   ,  , + , , ,,+  - , , , 

 +   % , # (   -   ,   ++ ,. # ,      , ,+ / , + ,- ,      # # ( 0# , +,  , , , , ,    , #    ,  +(      -/ + ,+  ,  , ,  1 1 ,2  -#    (

 

                                         ⎧ y − ν∆y + (y · ∇)y + ∇p = Bu  (0, T ) × Ω, ⎪ ⎪ ⎨ −  y = 0  (0, T ) × Ω, !  (0, T ) × ∂Ω, y = 0 ⎪ ⎪ ⎩ y(0) = ϕ  Ω.            z   L      "      Bu #  $ B      $    Ω ⊂ R      #  % %             %            t

2

2

Bu = K(y)

          %  %            %         

       $   %  



   

                                         



 

    

        

               !"

 

# $    %       

z

 

 

    &              

    '      &    & 

K

  

A

 '      

&          '

b(y)

  

    

yt + Ay + b(y) = K(y). (      

     

        & &     )  *

   K   z       



|y(t) − z(t)|H 1 ≤ ce−κt

 

        

c

κ  



      + ,,"     &  

 -   &        &  , . / 0 ,1 ,! ,2 ,+"     &

       + ,," -  

        &          &   2"    & &    

  



    &   &       &   

       &   ,3 ,4"    '  &   .      

 *   /                                                    -    4        )  

      '

 

c



C

  ' '     

     

         T > 0  Q = (0, T ) × Ω   Ω ⊂ R2        V = {v ∈ H01 (Ω)2 ,  v = 0} H = L2 (Ω)2 {v ∈ C0∞ (Ω)2 ,  v = 0}   &  5  H       H       & V  )  '  $&  V → H → V   6 H         V         - ' 

(ϕ, ψ)V = (ϕ , ψ  )H

&

ϕ, ψ ∈ V.

Lp (Z) (1 ≤ p ≤ ∞)     &     &   ϕ : (0, T ) → Z    p  ' (1 ≤ p < ∞)       (0, T ) (p = ∞)    7   

Z

 '  5 

          



    L2 (U)      U                 U             

B : U → V                      

            Uad ⊆ U                !               " #$       W := W (V ) = {ϕ ∈ L2 (V ) : ϕt ∈ L2 (V  )}

             

H 2,1 (Q) := {ϕ ∈ L2 (V ∩ H 2 (Ω)), ϕt ∈ L2 (H)}.

        #    

(u · ∇)v w dx.

b(u, v, w) := Ω

"  y ∈ L2 (V )    b(y)     !b(y), v V ,V := −b(y, y, v)   v ∈ V %       V     t ∈ (0, T )  b(y) ∈ L1 (V ) &' (  )* !     y ∈ L∞ (H)    b(y)       L2 (V  )               y ∈ W   W        L∞ (H)   &+*   u ∈ L2 (U)         " #$      ,      y ∈ W    

d (y(t), ϕ)H + ν(y(t), ϕ)V dt = !b(y) + Bu(t), ϕ



V  ,V

  ϕ ∈ V    t ∈ [0, T ]

) 

  χ ∈ H. ) -  .   /  .    0. =: ν > 0       #

       /  #             &'* Ì     ϕ ∈ H       u ∈ L2(U)    ) (y(0), χ)H = (ϕ, χ)H

        y ∈ W 



   

     

         A : V !Ay, v

V  ,V

→ V 



:= ν(y, v)V .

          u = 0                    V  ! yt + Ay = b(y), y(0) = ϕ,

     b(y)    "#  m ∈ N         $      (0, T )    h = mT  tk = kh! k = 0, 1, . . . , m#    z ∈ W → C([0, T ], H)    # %  J k : V × U → R,

 

(y, u) →

1 z = h k



tk + h 2

tk − h 2

1 γ 2 2 |y − z k |H + |u|U , 2 2

&

z(s, ·) ds

 z(t, ·) = 0  t > T # !  k = 1, . . . , m  i = 1, 2     ek : V × U → V   ek (y, u) = (I + hA)y − hb(y k−1 ) − y k−1 − Bu,

  y k−1          # '                    $ J k (y, u) (   ek (y, u) = 0  V  ,

u ∈ Uad ,

Pk 

  y 0 = ϕ# '   ϕ               V #    y k−1   (y k , uk ) 

      ek (y, u) = 0  V      (y k , v)H + νh (y k , v)V = (y k−1 , v)H + !Buk + hb(y k−1 ), v )V  ,V

∀ v ∈ V.

)

 ϕ ∈ V  !                    V # ' !    uk ∈ U *# )       y k ∈ V   

   |y k |V ≤

 C  k−1 |y |H + h|y k−1 |2 V + |uk |U . νh

 J k     ! ek     Uad     +     (Pk )! k = 1, . . . , m!       (y∗k , uk∗ ) ∈ V × U #   !

                  

λk∗ ∈ V

    

   

                  

A



(y∗k , uk∗ )

  

 

(I + hA)y = Bu + y k−1 + hb(y k−1 ), (I + hA)λ = −(y − z k ), (γu − B λ, v − u) ≥ 0 

    

(y∗k , uk∗ )

      

!       

(Pk )



       

                  



v ∈ Uad ,

 

(y, u, λ) = (y∗k , uk∗ , λk∗ )



(Pk )

V ×U ×V

      

   " 

       #     

Jˆk (u) = J k (y(u), u) 

Uad 

     

u∈U

   

$

y(u) ∈ V      Jˆk  u   

    % "  

 !  

∇Jˆk (u) = γu − B  λ,    

u

  

λ

          

y        λ B := (I + hA)−1                ek (y, u) = 0   y = B(y k−1 + hb(y k−1 ) +

& '                   

Bu)

(  

yk − z k 

         

!   

   

  

   

Jˆk

   

  #       )                                    *   

               '    

       ! '        

           

!       '                 +         

   

, &

y 0 = ϕ k = 0

 t0

+ -     

= 0 uk0  

uk+1 = RECIP E(uk0 , y k , z k , tk )

RECIP E



   

 

(I + hA)y k+1 = y k + hb(y k ) + Buk+1 .

  tk+1 = tk + h k = k + 1 tk < T        RECIP E                       !  !   ˆ k) "       uk0           −∇J(u 0

 # $ %         &'(

        %  )*+ ,*             #   &'(  ! # u = RECIP E(v, y k , z, t) .  (I + hA)y = y k + hb(y k ) + Bv

  (I + hA)λ = −(y − z)

  d = γv − B  λ    ρ > 0

/  RECIP E = v − ρd %  #         U = L2 (Ω)2  B  ! #  0  !Bu, v

V  ,V

= (u, v),

 Bu = u.

1

 &'(        )*+ ,* .  

   uk0 = 0  .        

          h

(I + hA)y k+1 = y k + hb(y k ) − ρBB(y k − z k ) − hρBB(b(y k ) − Az k ),

      y˙ + Ay = b(y) −

ρ BB(y − z) − ρBB(b(y) − Az), h

y(0) = ϕ.

y 0 = ϕ, '

.2

3  %    ρ K(y) = − BB(y − z) − ρBB(b(y) − Az) h

..

 .2        4 4   #   4  5           6   4 6 h      ρ  )*+ ,* .      .2 #        !              uk0 = 0    γ       '            %    K   y  z 5 .2 #        z      #

           zt + Az − b(z) = −ρBB(b(z) − Az),



z(0) = ϕ.

              ρ K(y) = − BB(y − z) − ρBB(b(y) − b(z)) + zt + Az − b(z). h



                     yt + Ay − b(y) = K(y)  L2 (V  )  y(0) = ϕ.        !   !      "#$   %&$%&' ρ

|w(t)|2H,V ≤ Ce− h t

∀t ∈ [0, T ],

  C  (     w := y − z & )                   ! (   uk0  *   $  "#$ '   +& )         !     (I + hA)wj+1 = wj + h b(y j ) − b(z j ) − ρBBwj − ρhBB b(y j ) − b(z j ) , w0 = ϕ − z(0).

+ )   !  ,  -. )/.            u ∈ Uad 

 & * (   !    uk+1 ∈ Uad   ( 0     (   Uad &   )               1          !             -. )/.  2    -. )/.  ,(     (  !   RECIP E = PU (v − ρd)&      (  ((   *        (  (  (   (Pk )&       uk       (Pk )         $ && Uad = U &  uk    ( ! !$ (  %$ ad

(I + hA)y k+1 = y k + hb(y k ) + uk (I + hA)λk = z k − y k+1 γuk − λk = 0.

3

)   !     uk = −(BB + γI)−1 B(B(y k + hb(y k )) − z k )

 &  

%  2       (   L(H, H)& 1  ( (   S      "'& .,(      Bz k = BB(z k + hAz k )   S = γ(BB + γI)−1 BB,



   

(I + hA)y k+1 = y k + hb(y k ) −

1 S(y k − z k + hb(y k ) − hAz k ), γ

   

      

h

 

y

y 0 = ϕ,



      

       

yt + Ay − b(y) = −

1 S(y − z + hb(y) − hAz), γh

y(0) = ϕ.



             

      

         

yt +Ay−b(y) = −

1 S(y−z +hb(y)−hb(z))+zt +Az −b(z), γh

      



  

(I + hA)y k+1 = y k + hb(y k ) −

1 h S(y k − z k ) − S(b(y k ) − b(z k )) γ γ +z k+1 − z k + hAz k − hb(z k ).

     

 "    

u = K(y) = −

y(0) = ϕ,

K

!



1 S(y − z + hb(y) − hb(z)) + zt + Az − b(z) γh

           # $ 



  

   %&

|w(t)|2H ≤ C e−

α(γ) h t

|w(0)|2H

∀t ∈ [0, T ],

 

α(γ) =

γ (1+γ)2 .

                     



 "   

K

       

min J(v k ) =

1 2

 |wk+1 | + Ω

     

γ k2 |v | , 2

˜k P

'  

(I + hA)wk+1 = wk + hb(wk + z k ) − hb(z k ) + v k .    

(Pk )#

( 

w = y−z

   )        

     # *         

  

          

 



(h, 1)         u = RECIP E(v, y k , z k , z k+1 , t) 

    

       

       

u

(I + hA)y = y k − z k + hb(y k ) − hb(z k ) + (I + hA)z k+1 + u (I + hA)λ = z k+1 − y γu − λ = 0.    

RECIP E = u

(h, l)

       

l ∈N

        

!   !             

lh" #   h" $    %

 !       !      

  &'()"

  

     %  

       !

    # *

 ' %  ' (  +" $        '     &,)"   '  ( %           

 ρ BB uk0 = 1 − ργ   k+1 1 − z k + Az k+1 − b(z k ) + ρBB(b(z k ) − Az k ) . z 1 − ργ

 I−

                    

 '(  &,)"              %      -        

z

 

  

1 J(y, u) = 2 % 

t

L2 * 

""          



γ |y(x, t)) − z(x, t)| dx + 2 Ωo

      

 |u(x, t)|2 dx,

2

Ωo

Ωc

         

Ωc

          %       % -   

Ω " /  U = L2 (Ω)"    

   .           0  *-   % B    1" /  !     Bu = K(y)    -    %      #   ' . 

%   ' (  +"





   

1

1

0.9

0.9

0.8

0.8

0.7

0.7

0.6

0.6

0.5

0.5

0.4

0.4

0.3

0.3

0.2

0.2

0.1

0.1

0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

      T = 1  T = 2                      Ω = [0, 1]2          

y(x, 0) = ϕ(x) = e

(cos 2πx1 − 1) sin 2πx2 −(cos 2πx2 − 1) sin 2πx1



,

   e                     z(t, x) =

ψx2 (t, x1 , x2 ) −ψx1 (t, x1 , x2 )

,

   ψ           ψ(t, x1 , x2 ) = θ(t, x1 )θ(t, x2 )



θ(t, y) = (1 − y)2 (1 − cos 2πyt).

          10           ν = 1/10         T = 2    !         ! h = 0.01           !      "            #$%&    %##'    (&(      )             *+, #  %   !            ρ = 0.1                 %          -       |u(x, t)| ≤ 103    )                           .       -    |y(t) − z(t)|H          % 

          



−3

2

10

10

|u(x)|<=1e−3 unconstraint

|u(x)|<=1e−3 unconstraint

0

10

−4

10 −2

10

−4

10

−5

10 −6

10

−6

−8

10

10

−10

10

−7

10

−12

10

−14

10

−8

10 −16

10

−9

0

0.2

0.4

0.6

0.8

1

         

1.2

1.4

|y(t) −

1.6

1.8

z(t)|2H

2

10

  

0

1.2

1

1

0.8

0.8

0.6

0.6

0.4

0.4

0.2

0.2

0

0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.4

|u(t)|2L2 (Ω)

1.2

−0.2

0.2

−0.2

0

0.1

0.2

0.6

0.8

1

1.2

1.4

1.6

1.8

2

         

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

    T = 2                 

                                  t ≥ 1.4                          

                               !"#  "  $       L2 !  |y(t) − z(t)|H     %     γ  &                 '   

                      "            !"#    '           "                               (          '                    104           108  )                *   



   

2

2

10

10 γ=0 −4 γ=10 −2 γ=10 0 γ=10

0

10

−2

γ=100 1 γ=10 2 γ=10 4 γ=10

0

10

10

−2

10

−4

10

−4

10 −6

10

−6

10 −8

10

−8

10 −10

10

−10

10

−12

10

−12

−14

10

−16

10

10

−14

10

−18

10

−16

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

    |y(t) − y¯(t)|2H      γ       

  

         

                      

                

 

  !  "# $  !   % $  & '  !  %   (# ) 

   (       *     * 

  % $  &  % +   ,--.  !  " "/  * 0   0# (        $       1  2    *     #3345 ,---. 3 !  " %   6 * ) 0 +# &

$        1         7    + & *    #-483 ,--3. 8 !   ) &  !#   

9   % '   !   )

,-55.  :   6 ;  + ;# 9  $  (    *                         7  ,--. < = >  !9 )  :* *  *# *     # %          2   #334385 ,-5-. ? =/$   *: *    # 2     @    

$             

1  !  *   2 *   9 #53453 ,. 5 " :!# :     

 !%6 2  6

 7   !    % $  6

    ' A22 2

6

 !   38 ,--3.

          



               



 !" #$##$    %     

"  &  ' (  ) *$##$+ ,#   -  - .   /  0 01      2     )3     4& !" 5 / 67,8679 :  ; / *,5+ ,,   <1         3/ = 

./         !  " !

 ,8$> *$##$+

,$   :   ( .   /      



 .   ?   ? ,,$##6    %

   "  &  ' 3 *$##6+ ,6   :   ( .   /      



  2  !     

,@  A B B (  C      / 2     01 1  1   2      ! D .  E 



,9@58,,97 *,5+

,7  A B B (        1   2      ! D .  E 



>7@8>55 *,5+

,> A . - D .  2     2  01  /   D F 

  $@78$79 *,9+

,5  . .  2  2     C /  1 ? 2  D F 

 ,$6 8 ,7> *,+

,9 " ?   4=     *,5+ , "G   F &/ ! F        2    /   H! 

 @@58@7> *$##,+

                  1     2     3 1

                  !"#   $ 

2

    

               !"#   $ 

3

          

                  !"#   $ 

    



%             

 & &   %'( )            &      *                     %    (     &                       ( ) &

   +     %                       (

   %       +   

   %               (

 

    

                                    !                  "                                               ! #                $%      &     '  ! #  &           ()*      ! +    

         &  !!          , - .  k      /     0 10 ! 2         1, ! 3           



        

                                         

                                                                     

k

k   

   

             

                          !     

  "#       $%% & %'(               



  )   

               * +             )                ,   - .  '                                      .  /             0

   

     

    ,              .  &



   

                   .           

      1            

      2          

     2                         

   

min cT x

 Ax = 1 x ∈ {0, 1}n. 3   

A   

       

   2         2  i  

xj

aij = 0

  

       

aij = 1    j 

j   cj     

                

   cj                       4             -             * +  *  + 5                     6   0                              

    3 6   0             

 /77 2                      

           



                                                                                  !   "                            

   # $   %    &

       

          $                  '  #            

      $                  $    (              

  $          )       %

          

     

     *          

 +                 

                $  %                                                          !   $    

      ,"" $     $       $   .               

   

   

             # $    "

        !" #"$ !! "### ""#$ #  !!$ !

               )   $               /#

        $              /#     $            '     $               '                         



        

                  

                         !"#



       $ 

 &         '(#) 



%

  * ** * *

      '      



 *

  

        

'(#)  & 

            +*                  

 &  

 

     ,      -    &   *    ) ./0       &   '(#)            

  &  

   

       -          

         

     

min cT x

 Ax = 1 x≥0

(P )



        

max uT 1 T

 A u ≤ c.

(D)

)     &    &   &       1&    & 

     3     

 2     *

  -    &    

     -           *           

        

  -            



) /4 +          ) 54 )&  

A0



  3  &   

  )

k := 0

k

(P ) T

min ck xk k k

 A x = 1 k x ≥ 0,     &



xk

uk  uk (Dk )





     

  

           



         T

rk := min cj − uk A.j j∈J

   J               (P )    rk < 0      

     Ak   Ak+1   k = k + 1                             



      (P k )                                                                 !                                                   "        #   $               !  V      %            &                                    !               !                fi   fj   

     

     fi               fj      '(    fj !          fi                )                      (fi , fj )  cij − uki    "   * )        %    cij  )          +       ',     

      

    %                         %   

         

 ' )               "   *               '   -                

         fi 0

super source

cij − uki

fj −ukj super sink

          



        

                                              !                         "                #    ! !  uk+1

 !       uk              $   !  %       !                    &         '   ! ( $          !      c1            u1    u0      c2   c3  !    )   c1     !    *     ! !    "    u3         u0  u1  0 11 00 00 u 11

c2

u1

2

u 1

c

1 0 0 1

11 00 00 11 3

11 00

Optimal

u

c3

             

+          !     & !     ! ! "    !)        '        (        !       $   !  ,       !            -./       

%  !         !       ! P˜      ! D˜    

   01 (P˜ )

T T ˜ − δ− y − + δ+ y+ min cT x   A˜ x − y− + y+ y− y+ x ˜ , y− , y+

=1 ≤ ε− ≤ ε+ ≥ 0,

            ˜ (D)

max u ˜ − εT− v− − εT+ v+  AT u˜ −˜ u − v− u˜ − v+ v− , v+



≤c ≤ −δ− ≤ δ+ ≥ 0.

                       [δ− , δ+ ]           ∗

      x 

ε− = ε+ = 0 





  x ˜ u ˜    

,u



   

(P, D)

˜ (P˜ , D)









˜ < δ+   ε− ≥ 0, ε+ ≥ 0       δ− < u                   

     

˜ D

ε−



ε+



       



                  

          

    

                                                      

 ! k

(P˜ )

T

k k y − + δ+ y+ min ck xk − δ− k k  A x − y− + y+ = 1 xk , y− , y+ ≥ 0,

k

˜ ) (D

max uk 1  uk Ak ≤ ck k k δ− ≤ u k ≤ δ+ .

"          

         

   # 

       

                  

        

           $                    %

          &'()                 δ+  δ−   

             # 

         *        &+)  

, 

δ+



δ−

       

    

 

                        δ %                   k+1 k+1 k k δ− = δ− − ∆δ− , δ+ = δ+ + ∆δ+ .

   δ+  δ−              %           #        ∆δ 

           -

  

                           

,                                               

T

cj −uk A.j     uk



         



        

                                                                

                                                                                                     

               

 !

"   !

#   

   !

$% $% $%* $%' $%, $%& $%( $%+

& )& *' ) + ( & 

'(() ')* *(++ ''*& '('& ',(& ''& * '

)(' )&) )&, )(' )&' )&) ) )+ )&'

(('& * ,& * ,&+ )+'( +')) ,+& *(*

-

((

' *'

),

&,

                        !      ||u − u∗||2        u       u∗                             "# #              

||u − u∗ ||2

Standard method

2.5e+06

2e+06

1.5e+06

1e+06

500000

0

0

20

40

60

80

100

120

140

160

180

20

(iters)

    -     -     

           



   

                    

                

                  

       %     

     √    ni=1 ui ≤ cj              cj / n       !                       %& %' % %) %( %. %, %+ 

         ∆δ = 700 " " # $   &'( &)(* +*), &( &)*++.&. &+& +**' &*&),( *).&.. &),& *).& &), &(.. *)-. &. &,) *).* &( &)+ *),* &(& &))( *'

   ')&) ()( )(( (*.) )*-& ','+ )'*) )& *'*

                 /0

      1        !                     0      )             

            2      

          !      

                     0                !  /    3!  

 !       

        1                  0        45         

                   6         &-----                   !   .(---  

            3  !       ∆δ           /   0

     ( %   ∆δ  7    0                                                       ∆δ       1   6  !  /    7



         ||u − u∗ ||2

Stationary BoxStep method

80000 70000 60000 50000 40000 30000 20000 10000 0

0

20

40

60

80

100

120

14

(iters)

                                 

          

     

              

#Var(s) 5000

FS 1 FS 2 FS 3 FS 4 FS 5 FS 6 FS 7 FS 8

4500 4000 3500 3000 2500 2000 1500 1000 500

128

256

512

∆δ

1024

2048

4096

819

#LP(s) 400

FS 1 FS 2 FS 3 FS 4 FS 5 FS 6 FS 7 FS 8

350

300

250

200

150

100

128

256

512

∆δ

1024

2048

4096

819

  !         "   #     $   ∆δ                                     

∆δ

 

           



          

     

                 √                   10080/ 2 # 7128 

                 ∆δ                                        

          ! "     [31, 7128]   [512, 1024#   

      $          %   & '        $           ∆δ          

                        $  

      Time (secs) 20000

FS 1 FS 2 FS 3 FS 4 FS 5 FS 6 FS 7 FS 8

18000 16000 14000 12000 10000 8000 6000 4000 2000 0

128

256

512

∆δ

1024

2048

4096

819

                ∆δ (                  $    

                                        )           *         +      ,     -             "                       )                          "            -      $          

 .# / 0    1 2   3  / 4        ( "  /  1  4   /05+4   

            66



        

                  

! ! ""#$!%   $ & $ 

  

'  

()%*+),*- +--.

*  /$ 0 /     1 $

       

 

 . ! #  2$

 $ 3 $  ! $ # *4,+*-

 "

+--* ( 5   /

$  /$   

  $ 4  $$8  

   

 $$6

+-(%-,*7 +---

   $ 9 ! $  :

                                 $ $ '

# (.+,(-. +--4

) 2  &

  / $   ;$$ : & 2! : +---

7 ' '! $  <$ 1 $   /$

= /:$! "

$ &       9$ 2$ $9  $   



*+ +--7

.   1   2



= 29"  3! "

 $     =$  & =!:!$! #  2! $! #

  $   3=/ +--- -   >:

2  

$    & $ ? 

!  "

.%7@*,7+ +-)@

+@ / > A  > ! 9 =$$ 9 $$  $ $  2! $! # 2  $ $! ' $   $ $ $   & 2! " : +--- ++ 3          8 $#   & "! 5# $$6 $ (@4 +-74 +   

2  ? #

  

*B*C%*.-,

      " 



 /

$ 2  ;$$ : &  +--- +*  

! = =  D8         

= >$  /  $       3 3 = $ $! ! ""$! =##! &  =$$ 9 $$  +--7 +( 3 $

()

#$ %  & '   # 

 E' +--7

+4 2  0 =

       (     

      6

 * (  

 +74* &

! #  = :$ =##! & $  ! 9 ! "

$  # -*,*@7 #$ @@@

                1    2     1   1        1 1

2

                           

             

 !                          "    #    $        % &       '      '(        104  4.105   "  #     #      

    )*%*+   ,nm3  )-%./   ,nm3 %    " 

   # /%///.'/%//0*  '(               #   %            

                   

           !          "            #   $   %          ! &         " 

     ' #            % (                             "                !                                  '          ! )    *                 "       '  #      '                " % "  $ !  #    "%         +  & +       

     ,- ! )  '  ,              + &       '              .!/  %! 0 '     



                

                                 

                                    

!    " #      " $  #           %  #                        #       &  #             "' "( )                     *         "+ ", -#        #                 #          .    /              !               0                   #           1    104  2.104  4.104  4.105        

 1           2.104  4.105                       *    !                   1 2 ,++  3nm3 4            56  7(            8)    9                *           2:914             ,         ; ϕ(r) = −0.18892(r − 1.82709)4 + 1.70192(r − 2.50849)2 − 0.79829

2"4

<   ϕ(r)   A0  8  #      =     >((A0  <  #     6 ?  9      ,++   3nm3   =        6  9  #     ; 0                 #                  ''"A0             

#                    ?           6   *          ''+A0  ''"A0  5      2''+A0 4      #        &      

      &     *        

  ''"A0       2.104      ,>$   3nm3          #    "

            



             

                    ith                 ith

                   



    A0   ith                              

    ith                    A0                                 !        ith  "       ###                              A0       $             Nv         

 ith      (2000 − Nv )4πR3 Vf = %& 3×2000          '  

Nv &(###

Vf

  %###'



                

    

                                               !"#      $ !%#       & '  ()%             &     1st         

                    !       " ! #  $ &  0

    1 ! #  $ % A    1st ! #  $ %     2st ! #  $ % A0    2st ! #  $ % st

    A0

%

&   &   &   & 

'(!)*+

, ./ 1/ ,1

, ./ 1/ ,,

,.0.1 1 ,.,

, .0 1 1 ,0

,.,1 1 ,-1

              *    +    ,             +   ,    -   '     '        

        -          *       (- A0     (. A0     !#            (%/ A0       '    '   &  0       '1       

            



                                

                            !"                           # $                            

      ∼ %% #   &                ' #            ( (                     

      $               )                                       

 #                   * +

              ,  

-    -    -    -   

.    / 5      6  A0 7             8nm3 ,        * + A0        * + ,    %    * + A0    %    * + 7     ≥  A0 ,       *)+       *)+ #        ,       *)+       *)+     ,       *Vc +       *Vc + ,       *Vf +       *Vf +

01!% 02 0202 034 33 33 3% 31"1 2.104

2.104

2.104

4.105

243 0% 003 4% 032  %1 % """ % 42 ! !00 !% ! 4 0% %1 202

243 0% 0!04 4% 02  " % "31 % 3%!" ! !%1! !%%24 4 0%4 %1 "3

20" 0! 00! 4% !!4  !" % % ! % %%" ! !%01 ! 0 4 0 " %2 201

243 0% 0% 4% 013  14 % "%4 % 02! ! ! 20 !"% 4 %"3% %1 10!



                

           

                          !  "    A0

   

  Vf       

  A0                        !"#$ !"#% !"&'$  !"#%  ( ) *      

  "#+"$ (    (  (    

 A0   (  

            



         

            Vf                   ! "  Vf "     #$ $      " %$ &$ ' ($  ! ")   ! "  Vf   *      +$ $  *    " %$ &$ ' ($  ! ") ,!")$  "  ! "  Vf 

   -   -$    )   , ")$   "" ! "  Vf

"    - .  -   

    "  )  - .  -  -   -                    Vc        ""   Vc =

Vt Va



/ Vt    " !"  ""  !  

   $ Va   !" ∼ π×1.263 A0  %      " "            !)  

                             "    A0   !  ! "    !)    

 $  ! ")      !) 

fc (z)            fa (z)$ fc (z)         *     !    0    "1 2   ""         "      " 3 4      104 4.104 $  ! ")   5 )          "  !    "      " % (  "      "  0          " % ($             3  "")$     !  )"6       "      

                          7   

8 " 3 8 " % 8 " 4 8 " (

3 )  $ 9 :      " ( )$ ;nm3 7    6    $A0 <     6    :   !   ≥  A0  !     !  '   

** 104 *#  #  * *

 2.104 *#  #  * 

#* 4.104 *#  +  # 

# 4.105 *#    * +

                 

       

                 

           

                                 1      

 ! A       "#$ %  

  " A &                   "'$!         

               

 

    (               (  $)! *nm     

 +"+,,         

        ++,,   & (     -           st

0

0

3

                            !   "     # !



                        4.10            .    &            

 

        

                     (/           """"0/""" )         (         (/           

  1 1  1 1 (   

    

 104

5



            



             



 ! "  # $

 ! %

&' ((( )*

  +  ,& - . + . /%    (      0  - ' ' 0

-   +  1%" 2 # 3

((( 3 ) 0  - ' ' ' 4  0

-   + ""5  #  %" 

"% 6  3  )) 3 0  - ' ' ' 4  + "  #  %"  "% (( 6   )  0

-       -

   .76 8 # 

9



"  3 )) *       &" 6  # &" 6#  ' 3( 3*) (3  0  - ''-

 00-

 048 + ""5  #  %

"  "%'  * ((  (  9  1& 4 + "  1 &

"%   1 &&  "  *

((( )    8    %  : "  .::: 1 &

""  2    #

: - % - )  * 3*  '"   9  "  1 &

""  "% 2    

*(    8  9  '"  1 &

"%   1 &&  " 

  (   9    8 ;% <  , '"  # , < 2 = 2

% &

"% ) >  

) '"     %  : "  % -% ! 4 %"    2

& " * ((( )

3 '"   9    8 1 &

" -  2    # : -

% -  3 )3  '"    8  9  :55?@ . "% 2    # :  - % -   3 )3 * '"   9  "  1

%% " @   2 # 2""  # "%

2    3 *)  A, %" "  ! "  # $

 ! %

&' ((( *)(*3(

( .  < 4 2""2  8  (

                                               



                  !       "   # $ % &            !     " ' (        % )                        " *            +  % *           %

 

                                                      

                !   "#$%&  '             (                              

     !          '  )    (  * (              (                  "#$+ "#$,&      -.  '            

  /  0                      1      ( 2  

     "#3#&

  '         ( 2  

   "#$4&   "#$3&    -  '   .     ( 

   -



  

                                        

                          

       

       

      

              

  

ut + u.ux + v.uy + ϕx − f.v + T x = 0 vt + u.vx + v.vy + ϕy + f.u + T y = 0 ϕt + (ϕu)x + (ϕu)y − r = 0

!"#

$  u   v          x   y         f   %    r        ϕ = gh      h        g       

T x = (τbx − τsx )/ρh , T y = (τby − τsy )/ρh 

c=

1 1/6 nR

, τby = ρgv

!#

  u2 + v 2 /c2 , τbx = ρgu u2 + v 2 /c2

τsx = ρa Cz Wz2 cosϕx , τsy = ρa Cz Wz2 cosϕy , τbx  τby         x   y       & n   '    

 R      τsx  τsy         

       x   y        ρ   

     ρa   

    Cz     (   Wz       ϕx  ϕy              x, y       

        )        * +           !"#   

                m 

!f (x, y), Vi =



 f (x, y) · Vi dxdy

elements



f (x, y) · Vi dxdy , i = i, j, k

=



global

                 

                       

                             



ue =

uj (t) · Vj (x, y)



j=i,j,k

 

uj

                  

             

Vj

u

  

       

                     

Vi =  

A

1 (ai y + bi x + ci ) 2A



       

bi = yj − yk , ai = xk − xj , ci = xj · yk − xk · yj (6) i, j, k

    

 ! " # $ %   

          &i     

bi ∂Vi ai ∂Vi = ; = , (i = 1, 2, 3) ∂x 2A ∂y 2A

'

(     ) "*+  ,                     ,     -           .  "            - 

+., [M ] ϕ + [K1 ] {ϕ} = [M ] {r}

/

 

[M ] =

m  1

[M e ] ; [K1 ] =

m  1

[K1e ] ;

m + . , m +.,   ϕ = ϕe ; {ϕ} = {ϕe } 1

1

0



  

M e =         ⎡ ⎤ Vi Vi dxdy Vi Vj dxdy Vi Vk dxdy ⎡ ⎤ A A A 211   ⎢  ⎥ A ⎢ ⎥ e Vj Vi dxdy Vj Vj dxdy Vj Vk dxdy ⎥ = ⎣1 2 1⎦ [M ] = ⎢ A A A ⎣  ⎦ 12 1 1 2   Vk Vi dxdy Vk Vj dxdy Vk Vk dxdy A

A



A

[K1e ] =     ⎛ ⎞     ∂Vj  ⎝Vi · ϕj ⎠dxdy [K1e ] = (Vj · u∗j ) · ∂x j=i,j,k j=i,j,k A ⎞ ⎛      ∂Vj   ⎝Vi · ϕj ⎠dxdy Vj · vj∗ · + ∂y [K1e ]

=

A e [K11 ]

e [K11 ]=

1 24

e ]= [K12

1 24

j=i,j,k

e + [K12 ] ⎡ (2u∗i + u∗j + u∗k )bi ⎣ (u∗i + 2u∗j + u∗k )bi (u∗i + u∗j + 2u∗k )bi ⎡ (2vi∗ + vj∗ + vk∗ )ai ⎣ (vi∗ + 2vj∗ + vk∗ )ai (vi∗ + vj∗ + 2vk∗ )ai

j=i,j,k



⎤ (2u∗i + u∗j + u∗k )bj (2u∗i + u∗j + u∗k )bk (u∗i + 2u∗j + u∗k )bj (u∗i + 2u∗j + u∗k )bk ⎦ (u∗i + u∗j + 2u∗k )bj (u∗i + u∗j + 2u∗k )bk ⎤ (2vi∗ + vj∗ + vk∗ )aj (2vi∗ + vj∗ + vk∗ )ak (vi∗ + 2vj∗ + vk∗ )aj (vi∗ + 2vj∗ + vk∗ )ak ⎦ (vi∗ + vj∗ + 2vk∗ )aj (vi∗ + vj∗ + 2vk∗ )ak

    u∗  v ∗    

u∗ = un+1/2 = 3un /2 − un−1 /2 v ∗ = v n+1/2 = 3v n /2 − v n−1 /2



                           ! n+1

n

n+1

n

− {ϕ} + {ϕ} {ϕ} n+1/2 + [K1 ] = [M ] {r } ∆t 2 #  n n + 1       tn+1 = tn + ∆t, tn = n∆t [M ]



{ϕ}

" $ " $ 2 [M ] {ϕ}n+1 − {ϕ}n = 2 [M ]{r}n+1/2 − [K1 ] {ϕ}n + [K1 ] ∆t

"

$

         %   & '    (   ) *+     ∂v           u ∂x .         L(u, v) = u∂v/∂x

,      (   ) *+        !    & '        & '   -

               



      

    

  ξ = kh  η = lh  h       

     u(∂v/∂x)             u = exp(ikx) , v = exp(ilx)

|T.E.|





[4η 4 +8η 2 +7η 2 ξ 2 −2ηξ3 ] 720

  ξ = η  || ∼ 17η 720  4

        

        !" #    Z :=  

∂v/∂x)

⎫ ⎧ ⎤⎧ Z1 ⎪ v2 − v1 2 1 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎢1 4 1 ⎥⎪ ⎪ Z v ⎪ ⎪ ⎪ 2 ⎪ 3 − v1 ⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎢ ... ... ⎥⎪ ⎪ ... ... ⎨ ⎬ ⎨ ⎥ 1 h⎢ ⎢ 1 4 1 ⎥ Z v = j j+1 − vj−1 ⎥⎪ ⎪ 6⎢ 2⎪ ⎢ ⎥⎪ ⎪ ⎪ ... ... ... ... ⎪ ⎪ ⎪ ⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎣ 1 4 2⎦⎪ Z v ⎪ ⎪ ⎪ m ⎪ m+1 − vm−1 ⎪ ⎪ ⎩ ⎭ ⎩ 21 Zm+1 vm+1 − vm ⎡

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬

$

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭

        %  & '!"       w = u∂v/∂x         ⎧ 3u1 Z1 + u1 Z2 + u2 Z2 + u2 Z2 ⎪ ⎪ ⎪ ⎪ u 1 Z1 + u 1 Z2 + u 2 Z1 + u 2 Z3 ⎪ ⎪ ⎪ ⎪ +u3 Z2 + u3 Z3 + 6u2 Z2 ⎪ ⎧ ⎪ ⎫ ⎪ ⎪ ⎤ ⎪ w1 ⎪ ⎡ M ⎪ ⎪ ⎪ ⎪ 2 1 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ w u Z + u ⎪ ⎪ ⎪ 2 j−1 j−1 j Zj−1 + uj−1 Zj ⎪ ⎥⎪ ⎪ ⎢1 4 1 ⎪ ⎪ ⎪ ⎪ ⎥⎪ ⎪ ⎢  +u Z + uj Zj+1 ⎪ ⎪ ⎪ j+1 j  ⎪ ⎥⎪ ⎪ ⎢ ... ... ⎨ ⎥⎨  ⎬ ⎢ 1 +u Z + 6uj Zj j+1 j+1 ⎥ ⎢ 1 4 1 ⎥ ⎪ wj ⎪ = 12 ⎪ ⎢ M ⎪ ⎥⎪ ⎢  ⎪ ... ... ⎪ ⎪ ⎪ ⎪ ⎥⎪ ⎢ um−1 Zm−1 + um Zm−1 ⎪  ⎪ ⎪ ⎪ ⎪ ⎪ ⎣ 1 4 1⎦⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ +um−1 Zm + um+1 Zm ⎪ ⎪ ⎪ w m ⎪ ⎪ 12 ⎪ ⎩ ⎪ ⎭ ⎪ +u ⎪ wm+1 m Zm+1 + um+1 Zm+1 ⎪ ⎪ ⎪ +6um Zm ⎪ ⎪ ⎪ ⎪ u Z ⎪ m m + um Zm+1 ⎪ ⎩ +um+1 Zm + 3um+1 Zm+1

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭

(

               |T.E.|



[2ξ 3 η+3η 2 ξ 2 +2η 3 ξ−4η 4 ] 720

)*



  

3 4 η     

           ξ = η  | | ∼ 720    

   u  v                          !

"

∂u/∂x = Zxu , ∂v/∂x = Zxv

      ##   #          ∂u/∂x  ∂v/∂x  #      Zyu Zyv   y    

 #              $   $      u   1

{u}n+1 − {u}n + {(u.Zxu )} + {(v.Zyu )} − {f.v} + {T x} [M ] . ∆t

2

+ [K2 ] . {ϕ} = 0

 

""

   $ %     v    1

[M ] .

{v}

n+1

n

− {v} + {(u.Zxv )} + {(v.Zyv )} + {f.u} + {T y } ∆t

2

+ [K3 ] . {ϕ} = 0

$ [K2 ] =

m 

[K2e ] ; [K3 ] =

m 

1

"&

"'

[K3e ]

1

$  ⎡

bi



Vi dxdy bj



Vi dxdy bk



Vi dxdy



⎡ ⎤ A A A bi bj bk    ⎢ ⎥ 1 ⎢ bi 1 Vj dxdy bj Vj dxdy bk Vj dxdy ⎥ [K2e ] = ⎢ ⎥ = ⎣ bi bj bk ⎦ A A A 2A ⎣  6 ⎦   bi bj bk Vk dxdy bj Vk dxdy bk Vk dxdy bi A





A



A



"( ⎤

⎡ ⎤ A A A ai aj ak    ⎢ ⎥ 1 ⎢ ai 1 Vj dxdy aj Vj dxdy ak Vj dxdy ⎥ [K3e ] = ⎢ ⎥ = ⎣ ai aj ak ⎦ A A A 2A ⎣  6 ⎦   ai aj ak Vk dxdy aj Vk dxdy ak Vk dxdy ai ai

A

Vi dxdy aj

A

Vi dxdy ak

A

Vi dxdy

")

               



  

                                       ∆x = 100 m , ∆y = 50 m , ∆t = 60 sec ,

    f = 2w sin ϕ

 w

= 7.29x10−5 sec−1 ϕ = 150  τsx = τsy = 0     n = 0.035       g = 10 ms−2        r = 0

                u = u(0, y, t) = 0.500 − 1.000 m/s  v = v(0, y, t) = 0.0 m/s,  h = 4.00 + 0.5 sin(πt/21600) m,          v = v(x, 100, t) = 0.0 m/s, v = v(x, 300, t) = 0.0 m/s

    !                                     " #     " #  $             

     (k) − hi |) = 0.001 m %      εh = max(|h(k+1) i &        εv = max(|vi(k+1) − vi(k) |) = 0.003 m

         n∆t = 4320     !          "h#



  

       ∆        

        u                                !!  !"         #    $

M

 

        %  &        $      '         $ &

  () *  & +& ,&    -& -& . /%  0  %

           1 +& * & , % & 2&"3 & !34'!5& (!) 

& & ! /  '         

           $    0 '     - % 6& & 7    8 %  1 9& 6% ,  6% & 4'5& (") 

& & " /  '         

           0     0        1 +& * & , % & 2&4! &! & ""'""& (3) 

& &  /     %     7 

 0       1 *  :      2&" & " & !44'!4&

               



                       !"#  $%%& '         (   ) *  + ,  -.      ! 01) 2

$ (

,   

/$./#  $%% , $%!% 3 4  

     5    .1 5 6  4  (  (( 7 ,( 

3((



 - 

$!8$# (

'!9.'##

# 01) 2 ,   * 1)      $%#/ +      : ((: 7 3 :. ( (  ; -

( 7 +

  

 - <( ,8<8/#%8#/  = > ?& (

                             

        

         !  "# $%       &  ' !   #%   %(        ' !     '     (  $     % ' !    ' !      $    )     '       ' !  ( *      $ 

                       +      !   (

 

          B                      div B = 0         B                                 !                " #$                     %     &                               '           

      !           

         #! #$    

              !            ()*           &  !          &        #$   !         (+,* (+-*                   !               !                                !                                .                /   0+12 !                    3                   



    

                     

                                                                                         

                                                                                 !                   "                   !     #               $                  %    ! $       !               $       &                 '()        $   * +   

  ,      -  ./    0      '()      -   # -  1  

    !        $ +           $   -  2          !

 !      / -  3

       ,             !     ρ/     ρv/    E     B         +      ,     ∂t ρ ∂t ρv ∂t E ∂t B

+ div ρv    2 I − BB  + div ρvv + p + 12 B  + div E + p + 12 B2 v − BB · v + div (B v − v B)

=0 =0 =0 =0

45

   /       /       

 ,          ,         E=

1 1 p + ρv2 + 12 B2 γ−1 2

4.5

 γ      6         45           4   7     5                   '()    

        



                            4    curl    ∂t B+ curl (B × v) = 0 ⇒ div B = const                                                       

 

                     

      !        "  ##      ##  $%&      #   "  ##    '      ()  (  $*&    

        '         #         #    # 

  #     ˜  Ω div grad ψ = div B +  ∂Ω ψ=0       ' ψ  #     ' B˜     

˜ i,j − grad ψ|         '    Bi,j = B i,j           ,       #          #     -    #              #                .       #       #

        #           ##           #    /           B 0    1  ,  $2&            #  (   # $&     3  !  $& 4            #     #  

                '  #  b(x)  b(y)

  i+ ,j i,j+                  #    

1 2

div

(0)



b

(x)

:= i,j

(x)

bi+ 1 ,j − bi− 1 ,j 2

2

∆x

(y)

+

1 2

(y)

bi,j+ 1 − bi,j− 1 2

2

∆y

%

               1  # #    #           



    

                                                         

                 

          

        

      !" #  

       $           

div B = 0

  %&!                   

  

    



         ' !     ( %)      $    %&!            

      

ψ

        %&! 

∂t B+ curl (B × v) + ∇ψ = 0 D(ψ) + ∇ · B = 0 

D    

 !+  

*

D 

     

   $ ,              +  & ,        

     

  $        #      %&! -   .

             

          

   /  

   &        /                 ,   

    

 

         ,                           

   

      ,

 ,               )  

  0        ,         /             1    0   '    #    

                

 ,          

          )             %&! 2  



    





       

,  '       /         



           

B (x)



B (y)

   /  

&,     

     

B (z)



        



                                          IRD D        

∂t u + F (u) = 0

     

F



u∈Ω⊆



   !    

 

C

  

 "     #     

C (F (u)) ≡ 0

$

 #    %   

C (u) = const

  

&

 %                        #     %      #   '() ( #                % %       (#       "%

u=B ˆ #

    

C (u) = ˆ div B

!      "%

Ω    "%    (xi , yj )  * ∆x × ∆y      %       h = max (∆x, ∆y) +   ˜ n : T → IRD  * "% ∆t    

      B

  ,  B   n    "% 

   -

   B     n    "% Bni,j  .

%          4  !    

T

 

    "%

K = (i, j)

 

   "        #  /

        !   %            

 01,  "0         1,  "                 

                V = g : T → IRD        ΦK : V → V          (i, j)          ˜            B           

˜ : T → IRD . Φi,j (B) " $



     Φi,j B˜ (i, j)     

k,l

2

    B˜   (k, l)   



    

                   B˜                                                                B˜                  ˜   Φi,j (B)               B˜                                                                 

n Bn+1 i,j = Bi,j +

" $

˜ n

Φk,l B

 (k,l)   (i,j)

. i,j

!""#

    B˜   (i, j)                                $                   !""#            %                        > i,j · B ˜ + O (hm ) div B|i,j = div !"&# > i,j        

    B˜  ' div         (                !""#       )      *"+,

 

                 

     

ˆ (g) Φ i,j

        

> k,l · Φ ˆ (g) = 0 div i,j

∀  (i, j), (k, l)

!"+#

""               !"+#   

                                 {Φˆ (g) i,j }  g = 1, 2, ...                              (g) " $ (g) ˜ Φ ˆ B Φi,j (˜ u) = ϕ !"-# i,j g i,j       

  .   )  ϕ(g) i,j            $        ϕ(g) i,j    /     

        



    Φi,j           (g)

    ϕi,j                                                > k,l                 div                      !           

           

"                 

   #    $   !        %&                    (x)

(0) ˜ divi,j B :=

(x)

(y)

(y)

Bi,j+1 − Bi,j−1 Bi+1,j − Bi−1,j + . 2∆x 2∆y

'

    #                (            div()    (x)

() ˜ := divi,j B

(x)

(y)

(y)

{Bi,j+1 }x − {Bi,j−1 }x {Bi+1,j }y − {Bi−1,j }y + 2∆x 2∆y

       ( 

{ψi,j }y = {ψi,j }x =

1 4 1 4

)

   *   

(ψi,j+1 + 2ψi,j + ψi,j−1 ) (ψi+1,j + 2ψi,j + ψi−1,j )

+

           !  ,*      () ˜ divi,j B        

         (i, j)   ×    -               

        .         

 (                              O(h2 )       #                

     *         /     .   -                 -               O(1)                   (                 $                          

     0   O(1)          *                         .                    O(1)  



    

             K = (i, j)            div()                          B                                B  

                                                    !        div()              "       #!   (i, j)  

                 (i, j)  $"%    &           !                        # !        



ˆ (1)

ˆ (1)

Φ = (−∆x, ∆y), Φ = (−∆x, −∆y), i,j i,j

i+1,j+1

i,j+1 ˆ (1)

= (∆x, −∆y), ˆ (1)

Φ Φ = (∆x, ∆y) i,j i,j i,j

'

i+1,j

            (   (  !  

       !                          

 (          !   ) !  K              !       !          *                                

ˆ (g)   '             !       Φ i,j +                            div()                                     !  

         ,-                     #        $.%  /01          

        



              

       n Bn+1 i,j = Bi,j +

∆t ∆t 1 − G (F 1 − Fi+ 12 ,j ) + (G i,j+ 12 ) ∆x i− 2 ,j ∆y i,j− 2



 F  G                                              !!"# #  $#

       % &    '   #            (           )#   )           )      * )         Φ( )            ) &    +       ,   -    F  +     +                 G .                         f #       x+       y +              ,    #    Fi+ 12 ,j

  1 = −fi+ 12 ,j 0



Gi,j+ 12 = fi,j+ 12

  0 . 1

/0

         )        )+   



( )

Φi+ 1 ,j

2 i,j

( )

Φi,j+ 1

2

i,j

= fi+ 12 ,j = fi,j+ 12



0 ∆y



−∆x 0







( )

Φi+ 1 ,j

2 i+1,j

( )

Φi,j+ 1

2

= fi+ 12 ,j

i,j+1

= fi,j+ 12

 0 −∆y   ∆x 0

/ //

   ,          n Bn+1 i,j = Bi,j +

$

∆t " ( ) ( ) ( ) ( )

Φi+ 1 ,j + Φi− 1 ,j + Φi,j+ 1 + Φi,j− 1

2 2 2 2 ∆x∆y i,j

/-

     (               )      *                      . / 1                        div(0)  div() #              #     *                                 (g) Φi,j                  

  2     " $ () (1) (2) Φi,j+ 1 = − 18 fi,j+ 12 Φi,j + Φi,j 2

/3



    

                                                  !  "  #                  ( )          Φi+ 1 ,j        2                                   

                   Bn+1                 i,j        $

∆t " ( ) ( ) ( ) ( )

n Φi+ 1 ,j + Φi− 1 ,j + Φi,j+ 1 + Φi,j− 1

Bn+1 i,j = Bi,j + 2 2 2 2 ∆x∆y i,j $

∆t " ( )

( ) ( ) ( ) Φi+ 1 ,j+1 + Φi− 1 ,j+1 + Φi+1,j+ 1 + Φi+1,j− 1

+  ! 2 2 2 2 ∆x∆y i,j $

∆t " ( )

( ) ( ) ( ) Φi+ 1 ,j−1 + Φi− 1 ,j−1 + Φi−1,j+ 1 + Φi−1,j− 1 . + 2 2 2 2 ∆x∆y i,j "                       #         $ %                                     &                                  

                                               !                  &        1 1 1 n+1 n ∆y (!fi,j− 2 − !fi,j+ 2 ) Bi,j = Bi,j + ∆t '! 1 1 1 ∆x (!fi+ 2 ,j − !fi− 2 ,j )                       ()*+    ,          fi+ 12 ,j       

                                       



1 1 ∆y (!fi,j− 2 1 1 (!f i+ 2 ,j ∆x

            − !fi,j+ 12 ) −∂y f + O(h2 ) = ∂x f i,j − !fi− 12 ,j )

 

    

           

  

f

(v × B)(z) 

 

     

           

         

  

   

 

    

   

 

 !  "   

         

   #       $  %    

div B = 0

          & '(      



  

    "        )%        

 

      *+  

  

 $ 

%   #

        %       %    



 

        ,                         

  

  -      

     

B



 

"            



v = v0            

   

B" 

sin ϕ cos ϕ



.

ϕ  %        

       *+     

         



B (x, t = 0) =

B0 B1

x < −y tan ϕ x > −y tan ϕ

/



       

           

B0,1

    !             

    ( ϕ, sin ϕ)T                       

! +   



T

R(ϕ)(1, 2)

 

B0 = R(ϕ)(1, 1)T



B1 =



   +

 R (ϕ) =

  

  "  

cos ϕ − sin ϕ sin ϕ cos ϕ

 0

               

   $  %        #



     (   



    

 

            B2   div() B                         tan ϕ = 1      div() B            ±∞     2             

        ϕ = 0  ϕ = π4    

                        ()                 div               

       1 2                

                



ϕ

 tan ϕ

=

             !  "           1     B2 #        tan ϕ = 2  $             

B               % #

                 

                         ()                   div  !  "                                 &                     

   

   

 

                          !  '        '('(      [−1, 1]2         )(     *       2               B    B    

            +&        

      

                        

     

        



                tan ϕ = 12

  !   " # $          %&           '    "  $         (          "

                               

                                             

             

    !"      #     ψ       B˜      Bi,j = B˜ i,j − grad ψ|i,j            $   div grad        %   #      &'"    

 

            #           (     )    

  

               )              div()      ψ 

     )                 div()         

 (    (  %  !" %            

             %  %      

  &*       #                  

  +   %                     



,                            (    

 %%      

      -     #           ."  %

          %     %  (x) (y) bi+ ,j  bi,j+         1 2

  

1 2



div(0) b

=0 i,j

∀ i, j     



    

Bi,j

⎞ ⎛ (x) (x) 1 ⎝ bi+ 12 ,j + bi− 12 ,j ⎠ = 2 b(y) 1 + b(y) 1 i,j+ i,j− 2

∀ i, j



(x)



div() B = 0



2

        

       

2

          

(y)

bi,j+ 1       2   Bi,j     

bi+ 1 ,j

                                                          !         

 B (x, y) =   

ϕ(x, y)

∂y ϕ (x, y) −∂x ϕ (x, y)

 "

     # 

div B = 0

!   

              (x)

bi+ 1 ,j =

ϕi+ 12 ,j+ 12 − ϕi+ 12 ,j− 12

2

∆y

,

(y)

bi,j+ 1 =

ϕi+ 12 ,j+ 12 − ϕi− 12 ,j+ 12

         

Bi,j



∆x

2

  

 $    

                  

               

ϕ(x, y)

ϕ

  

  

   #           $        %     "&  

ϕ (x, y) = B (x) y − B (y) x

'

B  ϕ(x, y)            B       

              (       

 

                                 )                              $  '

   

  

                        #                                                      *                   

           +    ,   #   $  - .                 /   Ms

x = −0.6  # = 8    

        



                                         8      x = −0.6 !      r0 = 0.4    "               

          

                     

  



 



     

   

     

    !       r0           "                                 #     $           

B   

eϕ = (−y/r, x/r)T 

B

 

     

ϕ

     

p

     !

1 p   = p  − B2  2

          *      

    

"           

                  

    %&'(

                

B

r = Bmax eϕ r0

   



%&)(

       

         

                             

+        

B    

       "  

                      

 ϕ (x, y) =

  

Bmax = 1.3



Bmax 0

r02 −(x2 +y 2 ) 2r0

     %&'( !

r0 = 0.4

x2 + y 2 < r02

%&,(

 

          

         





 



    

             t = 0.3   

                !      "#               $     !  %   & '()   )* t = 0.5

        

           

                          

 

                  

y           t = 0.5      

   x = 4.4    

      

[−0.8, 4.2] × [0, 2]



        

            

        

1000 × 2500 0.9    

 

 

 

 !  "              #$$% & 

 "     '()*  '(+*                 ,%-.   '/*  # 1  

0          

        "    "   

      " 234           + 3  ) 56#

371

1

        588      



  9   4  +         :      

t = 0.3

0  

                      :    

B

   

     !     

   :                                                                

 

4          

           2   

  "                 

    



    "                              "   4        

        



                                          

                  B                                                                                             !             t = 0.5       B    

                    t = 0.5                      !  "          #      $ $   3.5 " 6.5 %  $       #   & '(   )*                               

  "           

 # $    "  %&                          "       '                                    # $                     

 (   %&   

     "  %&                 &               B      

div()

                                

      

          '  

B

    

         )*+, )**,             

div() B = 0

 



    



             

                                                                              !"#$  !"%$                                                                                 

!"$ &'  (  ('  ('                                     ' ) *  + ½ ' ,"---. /01 !/$ &' )2  &' *'       ∇ · B        

           ' ) *  + ' ,"-31. %/4 !#$ '  

' +5'                                    ' 6  )  ' ,"--3. #"0 !%$ ' 6' 7 ' 8' 79' '   ' *' ( ' '  ' '   !  "       #! $  ' ) *  + ,/.' ,/11/. 4%: !:$ (' ' #  !   %  "      %        & 

 ' #   ' 6;66 + /11"/4/#' ,/11". !4$ <' *5  ' )8' &     #    ( ) "     # ' 6  ) ' ,"-33. 4:!0$ = ' < 5' +6' *          &  "   +' (' > ?  ,"--4. !3$ )@' 6  ' ' *   ' ,  ' 6  +' > ?  ,"-4%. !-$ )' =( ( ' * ' $-  .       $*  ' )* + ' ,"--4. /1/ !"1$   ' *' A ' +' (' 5' ( B' <'  C ' 2' !  "         #

&  /     #  ' )* + ,/.' ,/111.' %3%

        



                    

  

    

        

!  "#$ % ! &  &'(

           

" )*$

 

½ +   ,

                 

- )

 . %

! /* . 

 $(#"!   .  (" 

% 

00-



 !      "        # ∇ · B    "       $  %!   "    "        #  &

 )

 . 

 $(#"!   .  1 "  00-

2 ) 

  " )*$

 000

3 . 4$ #5

 %$ 4$  (" .%) 

$$ 00

                                 

!"#$%   & 

              



   '      

     ( !

   )             * +               !

            )       *

 

'         !    !

'    '        ( 

     

                                                  

                      

          

                        !     

         



          "       #    $               

     %                        



 &        !       #   '       

                

   !    

+ ), )      &  -    . &   0  1   -  .202/*

&/  



    

                                                                                           ½

   

                                                                                !           "                               

#                        $ %&&'(     )  %&'    %**' +                     ,

     !               ,            -  %&.'( /   - 0 %*1'   )2( /   )  %&3' /( + 4 ( +( +    5 6 %*.'( 7 ( !   8 %*9'   :  (     -%*&'                      6  ,    

( +    5 0 %&;'                 6  ,       "   (             < +  ( 5

( 5    / %;'           <                   =   (                                                  

               

                  (                    

        



   x   

 Ω         τ ∈ Ω         τ = t z  (t, z)         x : Ω → Ênx : τ → x(τ )              F [x, p, q] = 0



                 !        "!       # !       

    • •

  p ∈ Ênp              q : Ω → Ênq    $      

%                            &                                   '     D[x, p, q] = 0 (

 D[x, p, q] ∈ ÊnD  '      p  q    x  )( $    

   " $                  )   '    $         

 N1 $        q j j = 1, . . . , N1  & $)         *  $  j ∈ {1, . . . , N1 } $)    ηij        τij ∈ Ω   

  σij i = 1, . . . , M j 

  

          

F j [xj , p, q j ] = 0,

Dj [xj , p, q j ] = 0

+

 xj : Ω j → Ên  qj : Ω j → Ên  j = 1, . . . , N1  

        p          j x

j q

   ,              $                 + ,  $  j ∈ {1, . . . , N1 }      xj  * xji := x(τij )          τij i = 1, . . . , M j 



    

  xji           hji (xji , p, qj ) 

             ηij = hji (xji , p, q j ) + ji ,

i = 1, . . . , M j

       ji                   2

ji ∼ N (0, σij ),

i = 1, . . . , M j .

                            (ηij − hji (xji , p, qj ))/σij 2     

                                                       j

min x,p

N1  M  (ηij − hji (xji , p, q j ))2 j=1 i=1

F j [xj , p, q j ] = 0, j

j

j

D [x , p, q ] = 0,

σij

!"#

2

!$# !%#

j = 1, . . . , N1 j = 1, . . . , N1

&    x         N1       x = xj , j = 1, . . . , N1 .

    

                          

   !"#!%#                                  j        F j [xj , p, qj ] = 0           '      

             sj ∈ Ên  

             ξ j     xj  F j [xj , p, q j ] = 0 xj = ξ j (p, q j , sj )       xj = xj (p, q j , sj )   xj (τ ) = xj (τ, p, q j , sj ) (           !"#!%#          sj

        



j

M  (ηij − hji (xj (τij , p, q j , sj ), p, q j ))2

σij

i=1

2

    Dj [xj (p, q j , sj ), p, q j ] = 0       ˆ j [xj (p, q j , sj ), p, q j ] = 0                  D           

     v = s1 , . . . , sN1 , p ∈ n             r1j (v)22      r2j (v) = 0 r1 : n → n1 r2 : n → n2 n2 < n ≤ n1 + n2        

         

Ê

Ê

Ê

Ê

Ê

min v

N1 

r1j (v)22

j=1

r2j (v)

= 0,

j = 1, . . . , N1

" " $ $  r1 = r11 , . . . , r1N1  r2 = r21 , . . . , r2N1               !          r1 J1 J= = J2 v r2

  J1                J2                

    v  "       #

 J1  J2       $   ⎛ r1 ⎛ r1 ⎞ ⎞ r11 r21 1 2 0 0 s1 0 · · · p s1 0 · · · p ⎜ ⎜  ⎟  ⎟   ⎜ ⎟ ⎟ J1 = ⎜    ⎠ , J2 = ⎝  ⎠ ⎝ N1 N1 N1 N1 r r r r 0 · · · 0 s1N1 1p 0 · · · 0 s2N1 2p       J2    % n2 &'  J    % n ()  % *% +,-    . $/                                                   J1T J1 J2T −1 J1T 0 + J = I0 . J2 0 0 I

                   /                    vˆ      . $/   *        

 



    

                                   vˆ ∼ N (v∗ , C)        v∗      

       C    

C= I0





J1 T J1 J2 T J2 0

−1 

J1 T J1 0 0 0



J1 T J1 J2 T J2 0

−T   I , 0



   vˆ

 

(100 · α)%

       

α ∈ [0; 1]

     

v∗

  

   

G(α, v ∗ ) := {v ∈

Ên :

F2 (v) = 0, F1 (v)22 − F1 (v ∗ )22 ≤ γ 2 (α)}

γ 2 (α) := χ2n−n2 (1 − α)       χ2        α  n − n2             v ∗       v ˆ          ! G(α, vˆ)   



GL (α, vˆ) := {v ∈

Ên :

F2 (ˆ v ) + J2 (ˆ v )(v − vˆ) = 0,

F1 (ˆ v ) + J1 (ˆ v )(v − vˆ)22 − F1 (ˆ v )22 ≤ γ 2 (α)}. "   

GL (α, vˆ) = {v ∈

Ê

n

 : v − vˆ = −J (ˆ v) +

δω 0

 , δω ∈

Ên , δω2 ≤ γ(α)}. 1

      

                                                                                                

                               N2        ! j = N1 + 1, . . . N1 + N2  "                • •

             q j                       τij  i = 1, . . . , M j             wij ∈ {0; 1} i = 1, . . . , M j   #            

 $           "                  ! 2

ji ∼ N (0, σij /wij ),

i = 1, . . . , M j

        



    

    

                     a≤



wij ≤ b

i∈Ikj

         

cji wij ≤ cmax

i∈Jkj





        Ikj , Jkj ⊆ 1, . . . , M j  k = 1, . . . , K j     wij ∈ {0; 1} 

               wij ∈ [0; 1] i = 1, . . . , M j      

       0 < wij < 1 wij                

 σij 2 /wij

  cji wij              

       N1 + N2    • N1          η j  j = 1, . . . , N1 

• N2              η j j = N1 + 1, . . . , N1 + N2  !         "    

 "           #    ⎛

min x,p

N1  M  (ηij − hji (xji , p, q j ))2 ⎝ j

j=1 i=1

F j [xj , p, q j ] = 0, j

2 σij

j

j

D [x , p, q ] = 0, F j [xj , p, q j ] = 0, Dj [xj , p, q j ] = 0,

+

N Mj 1 +N2 

wij ·

⎞ (ηij − hji (xji , p, q j ))2 ⎠

j=N1 +1 i=1

σij

2

j = 1, . . . , N1 j = 1, . . . , N1 j = N1 + 1, . . . , N1 + N2 j = N1 + 1, . . . , N1 + N2   x = xj , j = 1, . . . , N1 + N2 

                 min v

N1 

r1j (v)22 +

j=1

N 1 +N2

r1j (v)22

j=N1 +1

r2j (v) = 0,

j = 1, . . . , N1

r2j (v)

j = N1 + 1, . . . , N1 + N2

= 0,

$%& $'& $&



    

    v = (s1 , . . . , sN +N , p)      J1   J2                                 

                                            J1  J2          J1  J2                                  

         1

2

       !

               "                # •    

j j ψL ≤ ψ j (xj (t), p, q j (t)) ≤ ψU ,



    



       

ϑjL ≤ ϑj (q j ) ≤ ϑjU ,

a≤



wij ≤ b,

i∈Ikj

 i∈Jkj

  Ikj , Jkj ⊆ 1, . . . , M j ,



cji wij ≤ cmax , k = 1, . . . , K j ,

     

wij ∈ {0; 1},

i = 1, . . . , M j ,

       wij ∈ [0; 1],

i = 1, . . . , M j ,

     j = N1 + 1, . . . , N1 + N2

           $      j = N1 + 1, . . . , N1 + N2       qj      wj   %                     & '(

        



                  C  ⎧1 · (C)  ⎪ ⎪  ⎨ n T  det(K CK) ϕ(C) = ⎪ max{λ : λ    

C}  ⎪ √ ⎩ max{ Cii , i = 1, . . . , n}         K               K T CK                      ξ = (q j , wj , j = N1 + 1, . . . , N1 + N2 )        ! x = xj , j = 1, . . . , N1 + N2         "           min ϕ(C) #$$% ξ,x   T   −T      J1 T J1 J2 T −1 J1 T J1 0 I J1 J1 J2 T C= I0 #$&% 0 0 0 J2 0 J2 0                      #'%#$(%        j = 1, . . . , N1 + N2 F j [xj , p, q j ] = 0 #$)% j j j D [x , p, q ] = 0 #$*%          j = N1 + 1, . . . , N1 + N2 j j ψL ≤ ψ j (xj (t), p, q j (t)) ≤ ψU #$+% j j j j ϑL ≤ ϑ (q ) ≤ ϑU #$,% 1 n

a≤



wij ≤ b,

i∈Ikj



  Ikj , Jkj ⊆ 1, . . . , M j , wij

∈ {0; 1},

cji wij ≤ cmax ,

i∈Jkj

k = 1, . . . , K j

i = 1, . . . , M j

#$-% #$'%

                                                                       

               !"#

"             .                     " /                         



    

                                                                      

                        !                    ξ                   v  "      C = C(ξ, v)         #                #        #       ,   +  $   v : v − v0 22,Σ −1 := (v − v0 )T Σ −1 (v − v0 ) ≤ γ 2  % &                     !    '   min ξ,x

max

v−v0 2,Σ −1 ≤γ

ϕ(C(ξ, v))

"             !$   !

   (           )                   '            min ξ,x

max

v−v0 2,Σ −1 ≤γ

ϕ(C(ξ, v0 )) +

 ϕ(C(ξ, v0 ))(v − v0 ), v

              $        * ? ? ? ? ? min ϕ(C(ξ, v0 )) + γ ? ϕ(C(ξ, v0 ))? . +,? ξ,x v 2,Σ

         γ  ?     ?   ϕ(C(ξ, v0 ))       ? v ϕ(C(ξ, v0 ))?2,Σ          

.                   /

              "                          0 # 1  23 4 "   

        



               

        

            

  

                    

 !   !   "       #        $%&           

!   '  ()*+

          "        ,--.,-/. ,  !    0 1     ,-2..      

     

             w     "         1       0         

                           

        1   

 '                    3     "        

    

            

          

               

   !   0  

  

          3     45(     $-6&                       1    !       "        ξ          !        ϕ !     C  $67&   C !     J  $-/& +     ! !            J !     ξ        J1         i ∈ {1, . . . , M j } 

"  j ∈ {N1 + 1, . . . , N1 + N2 }   !       p   j $  j  wi " j j j j j j j r1i = · η − h (x (τ , p, q , s ), p, q ) i i i p p σij    wij ∂hj ∂xj ∂hji i i =− j + ∂x ∂p ∂p σi !  hji := hji (xj (τij , p, q j , sj ), p, q j )  xji := xj (τij , p, q j , sj ) *        !     q j !  

 j $   j   wi " j j j j j j j r = · η − h (x (τ , p, q , s ), p, q ) i i i q j p 1i q j p σij



    

  wij ∂ 2 hj ∂xj ∂xj ∂hji ∂ 2 xji ∂ 2 hji ∂xji i i i + =− j + ∂x∂x ∂p ∂q j ∂q j ∂x ∂p ∂x ∂q j ∂p σi +

 ∂ 2 hji ∂xji ∂ 2 hji + . ∂x∂p ∂q j ∂q j ∂p j i

j i j

∂x                    ∂x ∂p  ∂q           ∂q∂ x∂p                                           !    "#           $  %  &'( )       #  *  + ,     ,        

       -   .   /     -         0,       %       ,    "1  *      ,     %      ,   %          w         {0; 1}                %         /   "        %     %      '             - % 23( "  2

j

j i

                                                    w                                                                       !           " 

#$%&    4               - % 23(                             "           ,    %                

       4         %     %    $& 5 ( %   1  4              %                 / %

        



                                   

A+B → C A+C  D 3A → E

     A    B      C      D

   E 

     L

 

                !

   



       

n˙ C (t) = V (t) · (r1 (t) − r2 (t) + r3 (t)) n˙ D (t) = V (t) · (r2 (t) − r3 (t)) n˙ E (t) = V (t) · r4 (t) nA (t) = nA,0 + nA,e (t) − nC (t) − 2 · nD (t) − 3 · nE (t) nB (t) = nB,0 + nB,e (t) − nC (t) − nD (t) nL (t) = nL,0 + nL,e (t) nC (t0 ) = nD (t0 ) = nE (t0 ) = 0

!          Ea,1 k1 = kref 1 · exp − n1 n2 R · r1 = k1 ·  V V Ea,2 n1 n3 k2 = kref 2 · exp − · r2 = k2 · R V V  n4 Ea,4 r3 = k3 · k4 = kref 4 · exp − V R " n $2  1 r4 = k4 · ∆H2 V KC = KC2 · exp − R          k3 = nA,e = nA,e1,0 · f eed1



1 · T  1 · T  1 · T  1 · T





Tref 1  1 − Tref 2  1 − Tref 4  1 − . TC2

k2 , KC

nB,e = nB,e2,0 · f eed2

nL,e = nL,e1,0 · f eed1 + nL,e2,0 · f eed2 ,

1



    

V =

nA · M A nB · M B nC · M C nD · M D nE · M E nL · M L + + + + + ρA ρB ρC ρD ρE ρL

        t ∈ [t0 ; tend ] = [0 h, 80 h]                    nA  nB  nC  nD  nE  nL   

Ea,1  KC2 

                   

Ea,2  Ea,4 

  

kref 1  kref 2  kref 4

     

∆H2                 nA,0  nB,0  nL,0    nA,e1,0  nL,e1,0    nB,e2,0  nL,e2,0       f eed1 (t) f eed2 (t)     T (t)              •              ! "  # •          



$      

! "&'( # 

"&'(

!       %      

•  

       



!

#        )    * 

+                          ,     %   -   *                       *  *   .%+/ &      ! *    0

      

*              -    *     1    %           *      234                                                                                   *                       5

               kref 1 Ea,1 kref 2 Ea,2 kref 4 Ea,4 ∆H2 KC2

2.50 ± 0.02 0.835 ± 0.007 91.3 ± 0.7 0.834 ± 0.002 57.991 ± 0.009 0.65725 ± 0.00007 0.9 ± 0.3 1.1 ± 0.3

2.504 ± 0.006 0.836 ± 0.001 91.25 ± 0.02 0.83537 ± 0.00008 58.004 ± 0.006 0.6574 ± 0.0002 1.082 ± 0.006 1.29 ± 0.01

 

                                         %           *            6         274 /                                    

         nonrobust design

robust design

0.007 0.006 0.005 0.004 0.003 0.002 0.001 0

0.2



0.007 0.006 0.005 0.004 0.003 0.002 0.001 0

0.4

0.6 0.8 Parameter 2

1

1.2

1.8

1.4

1.6

1.4

0.6 0.8 1 1.2 Parameter 1

0.4

0.2

0.4

0.6 0.8 Parameter 2

1

1.2

1.4

1.6

1.8

1.4

0.6 0.8 1 1.2 Parameter 1

0.4

                          Ea,1  Ea,2 !  " #      # $ $                                              !       " 

        #$ %        $       $            "  "   &   

  "$              

          & "  '(   #  !   

ηkij  (k

       

 !  &   

1, . . . , m2 )

= ψ, θ, c) (i = 1, . . . , m1 ) (j = ψ, θ, c       

ηkij = hk (ti , k(ti , zj ; p), p) + kij ,

2 kij ∼ N (0, σkij )

  "    )       

min

m1  m2  

p

 "  

−2 σkij (ηkij − hk (ti , k(ti , zj , p), p))

2

k=ψ,θ,c i=1 j=1

∂ψ = ∂t ∂θ = ∂t ∂(θc) −= ∂t +

 ∂  ∂ K(ψ; p) (ψ − z) + S(ψ; p) ∂z ∂z  ∂ ¯ ∂θ ¯ p) + S(θ; ¯ p) D(θ; p) − K(θ; ∂z ∂z  ∂(ρs) ∂  ∂c θDh (θ; p) − qc − + Q(c; p) ∂z ∂z ∂t

C(ψ; p)

  "$ 

%                   "  "$  )) * ) #       +  #       "   

c

θ

  

Q(c; p)

 

%       !  

¯ p) K(θ; ¯ p) K(ψ; p) C(ψ; p) D(θ; ¯    S(ψ; p)  S(θ; p) (

!   ,    -

Dh (θ; p)

ψ

  #   





    

   

              

                                            !                        "              

                             !              

                 "   "       

            

 

    p1  p2   p3  p4  p5  p6 

     

      !    

± ± ± ± ± ±

  ! !    !  !

± ± ± ± ± ±

± ± ± ± ± ±

  ! !    

"   #  $  %     & '       ( &#  

  

   "  

         

                

  

   #

 "         $          

              "   

%   





  "         

  & ' ( ) (%  ( *  "   + "  



,,!

      

&!' (  (    -  ./ 0 1 2 %   3                          

      456

78 !77!

&4'  2  0 1 2 % . 9/%  -  ./ *         "     " "      (   

                

        



                           ! " #$  %&'



  (

  # )    * # ) +  

,  -    ./0 1

  

    %4'



  (

    

"23"4 222

    * # ) ./0#56 7

.  ,

    , 8 $ !  9  * :  ;< ! # %>'



=4 +! "

   # )  /  / 1  5 )? $

   

  *$  ;   "& "2

" %@'  (

  0     * # ) 5   ,    

,    !    ,   A 



            

 ! "# $           % & !!!  '  ()  "@& , "#  #    4"@& A 222

  . *A  # #  

%'  (

  : A! ? *  B? 

#1    .8  

  +,

%' 

*    

"@

 : #  C #   : 5  0-$

  . , *   0   ;  (A 

* - # - "23&2& "&

%"2'  ( .D / * :!  6 / $.  +A *  , 5  . , #9  0-   

%""'

 -   - .- ==3>> "&          /  

-

*! !1 / $

   #   /  * 6 "@ %"' * 0 (   1   / #  #+5*E3 / #F*  ,  $    ? 

 -  -

"3@"22>

22

0  100- #    2       13   /    # /  222 6    5  .  +  :    - -   - G>H3">"=">@ "=

%"=' / (A   %"&'

%"4' :     5        %">' # ) 



  (

#$B  3 E1

 .04 =4G=H3=2& "=

    * # ) / 9  $

  ,    -    ./0 1          

       



  

    ===&4



! " #$  %"@' # )  0    (

    * # ) +  $

 ,    !   , !   -



           

 

    



    

                        

  



      ! "#

$%  $   &''((()$)#$%'  '*  * + , -  " . /   0    1)   2    3    4   35    %  6  

    !

    

     "          #  

 #$ %   &   

7   



 8&9:9; **

 + , - 



7 <   =%  >  **8   4  < +))  " " 35    % ,  #  >    2 4 2)   7  

  

 



 ;?8'@&8A*:8A*A **

 B )  

 

  '  



0 , C  

<  1( D **8 8 E " F)  +  1%  . 6 .( 4  ) 5   #

%

 G  

 $)   



 ( 



8?@&:* *   2 7  7 / H    . 3 /)  7 /   2 , )I .)   4    %  35    3      B  4  2 

 



)   ( 

 99&A *;;

9  3 7)   . " 

4   35    %

 > )    3    1 7%

 2

" (        "            %   & 

   -%#  

 8;?@&8:* **9

A 0   





 " 2#

  #1)(

    B)!  7  B # ,

#  ! J) / *;

                        1    2 1

2

                

  !" # #$  %         

                     & "    $ 

 $  '    

  !" # #$  %    

      

 !    ()    )   !  *!( !+,  - .   /       "   )  0 ) / - " "  - 

    !!) *    !  ) -  !, ! / -"  

     ) / /      " )  -""    )  /  // " /  " "   " "   " /     /)  1 )  " / -  /  1     " !( ! // " 0   " /           !( ! // "   /   - " "              2    ) " // /  "     )        /         " /        .   " 3   "  " "  "     /  "  .  

  0 " " !( ! // " -    "  )    "

-   " "      "   " 3 -   "

 " )   4" /    " "   "  - " "/

5/      -" " )  ) / 0 -  /  " !( !     - "          /  /    !( !  0 - " - " " )  

!( !             " -) " "     -" " /   "         1 "         0  -" "   " //  " .     "  /    " !( !           



   

 

     

                 

       

                  !"  #"          $$                       %              %     %                  &                                

               %                     '         ()*" +(,- .                        

   

          /              0                     '                                  1    2     0         2               '            %      +(3- +(4- +(!-               '   '                        1        0                                                    2                         5%            2    5%                                     .           

      2        &                  

           6   0      2    .          5%           

    %        5% 2       %       5% 7   57 8    57 %                            9                 

   





          

      

          s, s = 1, . . . , n             z, z = 1, . . . , m               T 

T (s, s ) := ρ(s = s |s = s)       ρ(z = z|s = s)    z     s         O (s, s ) := ρ(z = z|s = s)δ , z = 1, ..., m  

 1  s = s δ =  0  .    b (s) = ρ(s = s)                t   s   ! "  % b(s) = 1  0 ≤ b(s) ≤ 1 #          $   %    & $ $% &$ "               a     t   '                  ρ(s |s, a) (    a       T (s, s )  ) *      a     z        + 1  b (s) = b (s ) T (s , s ) O (s , s) 

, N 

t

t

t



z



t+1

t

s,s

t



s,s

t

t

s



a





t+1

t



a



z





s ,s

N :=





bt (s ) T a (s , s ) Oz (s , s) .

s,s ,s

             $% &$          a = π(b )        * * "       $% &$                   a = π(z )        * * &   -         .     a       r(s, a)                                 V (b ) := E γ r(b , a )  r(b , a ) = r(s, a )b (s) / t

t

t

t

T

π

i

t

i=0

t+i

t+i

t

t

t

s

t



   

          

π  γ ∈ [0, 1]

         

bt

       

       

                

             

Qπ (bt , at ) := r(bt , at ) + γ



π

ρ(zt+1 |bt , at ) V π (bt+1 ) ,



zt+1                      

π

b     a   !    ρ(zt+1 |bt , at ) = bt (s)T at (s, s )Ozt+1 (s , s )

    

 

" #

s,s ,s             

π∗

zt+1

 

  !  

bt

 

at  bt+1

    $  % 

   &    '  & 

()*   





Qπ (bt , at ) := r(bt , at ) + γ



ρ(zt+1 |bt , at ) V π (bt+1 )

+

zt+1  





V π (bt ) = arg max Qπ (bt , at ).

,

at

-          &     .   

       ($*      (//*                     -     0    1  1 (/2* 1    1 (3*   1  1 (+* %        1    1

    4   

/,,# (/*

4                 ' 

&  &    5                 

   !



   !       

                           (6*                     

     7      .0                      0                4      !                  4                                 '  &      

 8                (/2* "  

 

       5 

9          

       

      . &          

π  

       

         1 

       

   



                 

                                        !  "    #                    $

  %       &          '()  

     *                            *           +  

    *               

                                             

               $

 T

a=1

:=

   0.5 ct 1 − 0.5 ct 10 a=3 := := , T , T 01 1 − 0.5 ct 0.5 ct     co 0 1 − co 0 z=2 := := , O , 0 1 − co 0 co   10 −1 −100 cr . r(s, a) := 10 −100 cr −1

ct 1 − ct 1 − ct ct Oz=1





a=2

     '() co = 0.85 cr = 1 ct = 0.5        γ = 0.75

   ,                  $

 2 π1 (z) = 1

 z = 1

π2 (z) = 3 ∀z .



 z = 2

    ,                           #           

     #            "  ,  & $

 T

a=1

:=

0.995 0.005 0.02 0.98



 , T

a=2

:=

0.97 0.03 0.005 0.995





   0.9 0 0.1 0 , Oz=2 := , 0 0.1 0 0.9     −1 −1 −1 −2 r(s, a) := 20 + . 0 0 −1 −2

Oz=1 :=

                -.       s = 1

          s = 2     / 



   

             

               

                                                 

   !   " # $ 

   %

 &  '               (  )*#+)            ,    

     %

 &    

        )*#+)  ,$ ,        

                

  ,

         -  ,    

         

                ,   .            /             

                         , $         0 1         &        1              



        2    .         ,   ,        1                ,  

          - 3 ,  ,  ,                 2            (                    

  

     !     "   # #      $   %    !   !  #   $   % "          "   &     " #  ' ( )   *

   

  

   



               ! !    !  !   "!    "  #    cr $    "   cr  "            !$  ! !%    !    %    #   "      "!     !&  !$ ' cr  % 0.2#  "  !      #           $          

                                    V π (s)          ρ(s|π)            π         !V π !Rπ := % t tγ

 

!V π =



γ t rt0 +t ,



t

  t0                                ρ(s|π)           !"                           #        $                         %          !R           co  &  '                         π1 (z)           π2 (z) = 3                                 &  (                                     &  )                                                     *        

                             $        +  



   

                       

          

                          !     "c0 = 1      #        "c0 = 0.5     #               $ 

     %   %         &     &      %  " cr #     %

     %                     ! ct   %     '        &                ( &           T a=1,2    1

   



                                   

   | det(T a)|   0 ≤ | det(T a )| ≤ 1                        

T =

0.5 0.5 0.5 0.5



,



    det(T )       | det(T a)|                                 a            | det(T )|    1                                                                                    !   "          #           $%&%     '                   (              (                           %)*%            

+                     ,                   $%&%,     $%&% $ %  &  %     ,           "             #                    ,     - *"       "      '                . /  0

          a = 1 a = 2  a = 3                1 & s = 1   s = 2-  

                  (   23)       ,                  ,                   s = 3, 4      ) -            z = 1, 2, 3        4        5      678        (     "  9     +                  '   (         1



   



TSa=1

a=1 TH

T a=2

T a=3

⎞ 1.0000 0 0 0 ⎜ 0.0500 0.9492 0.0008 0 ⎟ ⎟ := ⎜ ⎝ 0.0333 0.0333 0.9308 0.0025 ⎠ 0.0033 0.0033 0.0025 0.9908 ⎛ ⎞ 1.0000 0 0 0 ⎜ 0.0500 0.9492 0.0008 0 ⎟ ⎟ := ⎜ ⎝ 1.0000 0 0 0 ⎠ 0.1000 0 0 0.9000 ⎛ ⎞ 1.0000 0 0 0 ⎜ 0.0250 0.9733 0.0017 0 ⎟ ⎟ := ⎜ ⎝ 0.0017 0.0017 0.9942 0.0025 ⎠ 0.0002 0.0002 0.0025 0.9972 ⎛ ⎞ 0 0 1.0000 0 ⎜ 0 0 1.0000 0 ⎟ ⎟ := ⎜ ⎝ 0.0008 0.0008 0.9958 0.0025 ⎠ 0.0033 0.0001 0.0025 0.9941

      d                   a=1 Tda=1 := d TH + (1 − d) TSa=1 , d ∈ [0, 1] .

                           ⎛

Oz=1

⎛ ⎞ ⎞ 0.9 0 0 0 0.08 0 0 0 ⎜ 0 0.1 0 0 ⎟ z=2 ⎜ 0 0.6 0 0 ⎟ ⎟ ⎟ := ⎜ := ⎜ ⎝ 0 0 0.1 0 ⎠ O ⎝ 0 0 0.2 0 ⎠ 0 0 0 0.1 0 0 0 0.2 ⎛ ⎞ 0.02 0 0 0 ⎜ 0 0.3 0 0 ⎟ ⎟ Oz=3 := ⎜ ⎝ 0 0 0.7 0 ⎠ . 0 0 0 0.7

                              r(s, a)     r(s)  r(a) r(s, a) = r(s) + r(a) . !"#       a                          $        %             !&            r(s)       5    r(s, a) = r(a) + 5 r(s)

   





⎞ ⎛ ⎞ ⎛ ⎞ −6 −8 −10 −1 −1 −1 −11 −13 −15 ⎜ −6 −8 −10 ⎟ ⎜ 0 0 0 ⎟ ⎜ −6 −8 −10 ⎟ ⎟ ⎜ ⎟ ⎜ ⎟ r(a) := ⎜ ⎝ −6 −8 −10 ⎠ , r(s) := ⎝ 0 0 0 ⎠ , r(s, a) = ⎝ −6 −8 −10 ⎠ −6 −8 −10 0 0 0 −6 −8 −10

        T → ∞       γ = 0.9     γ = 1                     γ < 1       

                             !                         "     #$%  &   &    '(    ) *         +                                  !   " #              $" "%   &'"

  ,  ⎧ ⎪ ⎨3  z π(z ) = 1  z ⎪ ⎩ 1  z t

t t t

=1 =2 =3

-& ,  ⎧ ⎪ ⎨3  z π(z ) = 2  z ⎪ ⎩ 2  z t

t t t

=1 =2 =3

(       , "             .    #&   a = 1  a = 3         & ,  (     & , "       & ,       (            & ,         a = 1    



   

                    %                       t |at − at−1 |                                   !"#$!   

                 d       !     R

  "        #$#     π(b)  P         t |at − at−1 |        π(z)

          

        %     !"#$!            0.2                      !"#$!             &  ' (                                 %                                

     !"#$!                      

)    !"#$!                  

   !"#$!       !"#$!            *                          

     +  &   ,     -                                  .                            /                    

               

   



                                                                          !            "      "                 #$% & &       '& (  )     *              +                        ,-./$ $001 #2% 34                  $.15 $0,1 #6%     4                +             $007 #-%      & &                                $526.$527 $00- #,% 89            +                ! $077 #/% :     :          + !    2552 #1% 34 ;                      "#$%    $ 72*6,.-, $0/5 #7%  & &  9     * <      +     9    3   <0--5 $00- #0% &3 3         +                  $$$ 11*2,1.27, $070 #$5% 4 < + 9            +     &'  (   $01$ #$$% 4 < + 9            +      !   = *     &'  (   2/>2?*272.65- $017 #$2% 3 < 8 <    @  A :  8  A 9    A @  !         

                  ( '  % $7*25, 2552 #$6% 8 <        ( '  #   B     C   $D255$



   

     

                

           

    

    

   !!

 "  #  $#     #           #  %     ' ( )   



 &! & &

*      #       +

         , -! ! .

      



    

       

                   !" #$ $  %    

 &    ' (  ()     (( *( *   * +    (   * *

   (* (( ,      ( ( +  (   *  ( -( . +) *  (/  +  *  -   '* -( (*      

  (      (*      &  ( . (   (         (  +   (*     ! %0(   *(  '* -(    +         

 

                                                                                                     !"                  #         $                    %&'()                                                              *        +,'% +,  '-)             % ./0) 1         1      ,&2 %,   &    2  )      3       3            "    3     #        #       * 4    +,'-         / 1$ 



 

                                            

      

                                                                             

                                      !"#$      #          "     %    ! # &%!#'       

      (                                      

)        *   #+*                          ,    (        -      .             +                ,     %!#         

                          .                                                 

           

              (           /0         )      

         &'           , #  

          - 0 123 +   

              ri    vi   mi      

             

              

  -            

                       ρi    ρi =

N 

mj W (ri − rj , hij ).

&4'

j=1

 

      h         

             

      

      



                              

                                                    !v"              !P "     #  ai visc    #   

   

           1 dvi = − ∇Pi + ai visc dt ρi

!"

           $             dvi =− mj dt j



Pj Pi + 2 + Πij 2 ρi ρj



∇i W (|rij | , hij ) .

!%"

   Πij     #           $            & '  % (            

     & '$       )       xk )      * +

         

&      ,   

 $   

                &   $    ,            $            . /           



 

      

                                                      !           "                                     #          "     $        

         %    $                  &'  (   

   "                   )*  '+ ,     '+      - #                '&            ,  . /01- #      22 3% 24  '&    "  &    5*.  ,6'.57888-   72   77 3% 9 3         77 3% :9 3  3                    6*     5*     "      ;  ;      4 772  

              



$                      9 <              ,  7- #     

      



                   

               

                            

       

            !              



    " #          !      !  "                                    !       "         #                      $ 

           % 

&&& '($         ) &*+ ,-   + ,.$/  !            * %&*/      %  / "     

         

   0    ! #    

1   "            !     !

 f=  

+1 −1

  = 

bias = 2

0  = 1

  × 1 + F ract × 2−(Signif Bits−1) × 2Exp−bias

(ExpBits−1)

%$/

− 1.

   (    !           !       



   !    2

   

    !  



     *  

   

   "  

    *

    1

    

  



 

       

           

                                                      

                          !"#

       

                   

    

    

       N × log N           $    %   &  &              

   

       $              %     ' &            

   $()       *                          &             $()         +  ,          

        %                    

           +-  ,.       *     +                                                    &      / 

      



                                       

                                           ! 

    "           !

                 ! "### $ %&'( ) * + *

  1 * 2  1 * 

 

,,0 #  $

     

,,, ,, ,,/ ,.

,, ,# ,#, ,## ,#-

  

     

,,0 #  $

,.   -# #

/ -0 /$ 0.



 

     

,- , / ,0 $- - # 0/ /

  

     

,,0 #  $

# -, -/ /0

/-, ---

          3   4     ! "### $ %&'( $ 4   4  $ 4   4              

 

,,0 #  $

     

$ - 0 0 $.

.# .# .# $$ $$

  

     

,,0 #  $

- # 0$ $.$ .#

/ /# -, /# -,



 

,,0 #  $

     

, ,. ,00 ,..

.$ ., . .# .#

  

     

,,0 #  $

,$$ ,/. # $0-

 00//0

   #                                    #            $       F (xi1 ..xin , xj1 ..xjn ) $        %              &           '                                   (         



 

                    

    

    



  

 

                                 

       

            

                

       

                 

      



                                                  

               

  ! "# $ %  &          '   !% (  $ %       

)  " )          &      c&   ρ = &  p&    h    *   f  !         

     &       

          )  "       ("    '+ ,        -   . -.###%' )/01                    "2 345  !  6 "#   $ %          + 0)  7      $ %              %     (2### 3) &           

 

                        8/4   9%   %         !   )/01                       

            $ %    )/01            !                % 5 $ %                                           :    ;%%  )/01        + 0$                                                  0<1/=%         %     9%                    



 

 

                                          !     "# $  ! %     &   '(#  )    !  "# $ 

*+,    -     #. /!-  0. ! 1  #    ! #    2   +334  5637589 :+334; *5,     <$# !.   ## (%   #   (

 (     ( (  #=  ##   ###      &   >) 2# & #  ?   $  :+333; *4,   ! < "( @  @. " !#  >(%  #    /#     )-56A8 B/!   B %  #      ?$ #    $ C57D4 :+33D; *C, "  B $  < !    2. 1/!-(+. !  $ # #(        (%  #   #   ! #    2    3C473DC :5AAA; *D, %  &.   # "  . !  2%#:;  >#  ## $  > #  ## #  <# !(   # 5637599 :+33A; *6, %  %  !.  # E      # "   ##   #($   >   !     +A6A7+A85 :+338; *8, <    <$# !     $ # "    <#  . !"!(/!-. !  "   ! ( /!  -   )   #   ###       $  E   !

#   ++937++3D :+333; *9, <$# !. !- 7 ! )(6C  "$    B/!  (     .FF(#D ( F $F=F :5AA4; *3, @  / <$# !   .  $ B#  $(   ! B/!  !#  ? >(%  #    BGA5 +957+3+ :5AA5; *+A,  % .    ! !#$    " ( $  1'     :5AAA;

                       

            

 

 

                   ! "       #                            ! "             

          

 $        %&'        ! "                  ! (      )                     ! !                             #      !                              ! *                   + ,               -         

     !    .   /     0                      0  !

 

                              

                    !"#$% &    #   !"%              $' (                                                  

                                                   )          * 

             & 

                

          

   

                    &               



        

                                                                    

                                  

       

  



   

           ! !   

p

  

   "

G(z)   z                !     u(k)  U (z)             y0 (k)  Y0 (z) #

 

                  

          !      

d(k)



D(z)

    $ 

       

    %  #       

G(z) y(k) = y0 (k) + d(k) & ! !

                  #        

yd (k) 

   

 

e(k) = yd (k)−y(k) #   u(k) 

    !            

 

       #                      #                ! 

   !      '      !  !   !



 

ϕ

        !          !               

  !

 

u(k) = u(k − p) + ϕe(k − p + 1)

(

#                 



  

   

z

G(z)

     

 



    



         #

         !   !  

U (z) = z −p [U (z) + ϕF (z)E(z)]

)

 !      !         ! (             #       ! 

 !   

  

           !             *   )     !       

z

    

F (z)

     #    

                     

  +    !           

           

  

        

$  ,-.     !       



F (z) # 



        



                                                                

    1 − z −p [1 − ϕG(z)F (z)] E(z) = 1 − z −p [yd (z) − D(z)]



                    

 

  

                 

       !  

p

     

 !                   

  "              

#     $               

   

             %  

                 &  

P (z) = 1 − z −p [1 − ϕG(z)F (z)] = 0

       %   

                '                          

P (z)     2π              2π     &    

               G(z)           F (z)               2π                   ' 

            P ∗ (z) = z −p [1 − ϕG(z)F (z)]              z             () '       F (z)       z −p G(z)F (z)      !    p               

       



 



   

  

 !                     *          +     

 



P ∗ (z)



z

                 



           ()               

|1 − ϕG(eiωT )F (eiωT )| < 1

  

ω

  #    

T

,

       ' -./   

        0           

            ,     

            1    

%  

ϕG(eiωT )F (eiωT )   ω   



    

        ()             "          #       

[1 − ϕG(z)F (z)]    

F (z) z p E(z) = [1 − ϕG(z)F (z)] E(z)

 

 

            

 %      ,    

         

             

     



       

                                       

    ω           ϕG(eiωT )F (eiωT ) 

                    

           G−1 (z)          F (z) = G−1 (z)   ϕ = 1             

                                      z p = 0                  !    

       0 < ϕ < 1            1−ϕ                      ϕF (z)G(z)/(z p −1) = −1    p        F (z)G(z) = 1    ϕ    p                            F (z) = G−1 (z)       "              

                        #          G(z)                  $      

               %             &        %                   ' (            %      

          '   )*+                    %  ,     

  %                 %  -        -.-,  /,01   % 2  *1** //  ///    % '  ,-,/2 ,-,, /2-  //2-                       3                           4   

,-,/2        /// 5           &            (−23.204)1000                %    &                           '    6 '       %   G−1 (z)    %            7                

        



 

            

   

                   

      G(z)       



       (z − z1 )  z1       

                    (z −1 − z1 )  z                 

    ϕG(eiωT )F (eiω T ) 

         

       

  !        

   "             +ϕ    ϕ         )        *  

   #  

 G(s) = aω02 / (s + a)(s2 + 2ζω0 s + ω02 )           $%%     #     

        &   '  '    (  )  a = 8.8  ω0 = 37 #                       *     ϕG(z)F (z) = ϕ∗ (z − z1 )(z −1 − z1 )  ϕ∗         +     ϕ  &     ,(  # +      

  -        

                -            .    +           

 -    .               +              

p         

       $                   p = 10   

      

               &        

       

    ' +            

 

        -              

0

4

2

−4

Imaginary Axis

Magnitude (dB)

−2

−6

−8

−2

−10

−12 0 10

0

1

2

10 10 Frequency (rad/sec)

3

10

                3rd  

−4

−4

−2

0 Real Axis

2

4

          

    3rd  



        

              

            y0 (k +3)+a2 y0 (k +2)+a1 y0 (k +1)+a0 y0 (k) = b2 u(k +2)+b1 u(k +1)+b0 u(k)

                                                 u(k)                        G(z)              !                                                    "#$     %      &    d(k)              u(k)   y0 (k) = −d(k) &               d(100) = 1              &       k = 1, 2, 3, . . . , 198 %                                  ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤  s(1) a0 a1 a2 1 0 . . . 0 ⎢  ⎥ b0 b1 b2 0 . . . 0 0⎥ ⎢ 0 b0 b1 b2 . . . 0 ⎥ ⎢ s(2) ⎥ ⎢ 0 a0 a1 a2 1 . . . 0 ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎢ ⎢       ⎥ ⎢  ⎥ = ⎢        ⎥ ⎢ 1 ⎥ ⎣       ⎦⎣  ⎦ ⎣        ⎦⎢ ⎥ ⎥ ⎣0⎦ 0 . . . 0 b0 b1 b2 s(200) 0 . . . 0 a0 a1 a2 1 

'



    u(k)         !  s(k)  k  (  )**    %    (   100th           (+,     ! %         198 × 200      200 × 1   %     198 × 201       201 × 1            &            -. /.0    s(1) = s(200) = 0           1            -!2    " 3                           #           %         " 4          5*  ,*  !      ,*  +*            !*()  6**4 .   ((*  ()*       ! 7         !(*  64   10−3 "  

        



−7

5000

2

x 10

4000 3000

1

2000 0

0

s(k)

s(k)

1000

−1

−1000 −2000

−2

−3000 −3

−4000 −5000 0

20

40

60

80 100 120 Time step k

140

160

180

200

         s(k)   

−4 70

71

72

73

74 75 76 Time step k

77

78

79

80

       ! 

"  #

                 a−99 = s(1), . . . , a0 = s(100), . . . , a100 = s(200)                 100th                                                                                a−1 , a0 , a+1         



     !!  !                   "!!    #          $!!         !!       ϕ        % a0 e(100)   

     & a+1 e(99)         

       a−1 e(101)      

     !  '  (  &        a−n2 , . . . , a0 , . . . , a+n1                 ) F (z)  *   G−1 (z)% u(k + p) = u(k) + ϕ [a+n1 e(k − n1 ) + . . . + a0 e(k) + . . . + a−n2 e(k + n2 )] + F (z) = an1 z −n1 + . . . + a0 z 0 + . . . + a−n2 z n2 ) * = an1 z 0 + . . . + a0 z n1 + . . . + a−n2 z n1 +n2 /z n1 ,

-             )              #    (       n1 + n2              &       .  n1                            z −p [1 − ϕG(z)F (z)] *      (                #              &        ϕ  &     n1  n2  #   &  )                ϕG(z)F (z)  z                     /  #   (                



        

                                                         

                 ϕ    ϕG(z)F (z)    z = 1                n1  n2                                     ϕ                                               

     !                    "                      #$% &'   #

%$&(               s(k)      ")(                   *                         +      ,                       ,                           *&& -     && -           * 

                .                  &/  &        G(s) 0         *&& -        / 1                                    

              

  



*

$

2

/

)

'

!

  

  

#$% &$ #2% &2 #$% &2 #2% &/ #$% &/ #2% &) #*% &/ #$% &) #2% &' # % &/ #*% &) #$% &' #2% &! #&% &/ # % &) #*% &' #$% &! #2% &# !#% &/ #&% &) # % &' #*% &! #$% &# #2%

& !!% &/ !#% &) #&% &' # % &! #*% &# #

%$& #2%



#/% &/ #/% &) #/% &' #/% &! #/% &# #/%

& #/%

#/%

*

        



                            k = 100, 300, . . .    p = 200             !!        "                 #       !! $            %          G(z)               &!!   '      !  ()!  !)*   +,   &                8 × 10−4-  "           %         .   ) /!0   +,   1'-     "       "      ! 2-  "                              .          )/!3   p = 10 4"                       "                     -      -     "   ϕG(z)F (z)     n1  n2 -              (          

     * $            3      )!/!0         0   3         3 - )'/                        %                    "       $-                             −4

2

x 10

4

0

3 2 Imaginary Axis

Output

−2

−4

−6

1 0 −1 −2

−8 −3

−10 200

220

240

260

280 300 320 Time step k

340

360

380

400

             

−4 −5

−4

−3

−2

−1

0 1 Real Axis

2

3

4

5

              !  

        

1

1

0.8

0.8

0.6

0.6

0.4

0.4

Imaginary Axis

Imaginary Axis



0.2 0 −0.2 −0.4

0.2 0 −0.2 −0.4

−0.6

−0.6

−0.8

−0.8

−1 −0.5

−1 0

0.5

1 Real Axis

1.5

2

2.5

     ϕF (z)G(z)       

−0.5

0

0.5

1 Real Axis

1.5

2

2.5

     ϕF (z)G(z)       !

 "# $ % &  '  ( ) %*  +,  -.. . /   ) . &  * ) + .(    0 ( /   %1-/ 2 ! 0  !!! "!#  , &(( 3 / 3(* (     +- &(  %  4  5 . -.. .  6   4 $ ' + %   7   6.  .8 2 0  0  9 - :4  *.  *.  -  5    ;..  ;  $..   ;;0 9 0  " # ) ,  ( < <  +)  4 / )  (  -.  + .(    !9 %;;; /.  5. ( / 0  ! ! "9# ) ,  $ =  ( &  '  +) 6  4 / )  + .(    !9 %;;; /.  5. ( / 0   0 ! " # $ >' & $  $/ ( /* ?? +-  ( )  5.  4 / + 7   5 . )  & 

 ( / 2  0   0 "#     +% 4   / ( 4 /  ;    .. + %   7   / ).  %  % 4   / 2   7 !    9 "# ) 7 = (     +&(   $  @  *  1  6 4 / + .(    -%--A--) - ( . ).  /. & /- -  !! "0# ) ) . (     +/     ) 6 (  (  1.  /(    ( 4 / + %   7   -( &  . ( /  )..     "# ? -  , ( ( 7 )6 +@  ) ( )  +  .(     %;;; /.  5. ( / 0  0

      

  

                        !             "              #               "$% &      '           

                  

             #       (  %   ) # * +  ,   +      

+ "  -  .    

           

                

              

    

              

                   

          

                

    !            

 

  

            

  "      !    

#   

               

   $                      

             

    

 

       

             

   $                         !   

 % 

            

              $     



   



                                                    

  

                         G = (V, E)    E                               V                                        

               

                     !     "     qe , e ∈ E             "       #           pv , v ∈ V                    $  pin                   

pout                  !                       

   %                                                                                                 &  '                                             (    %     %    %       %        %   

          )       

            %               * p2out = p2in − ( q |q|,

 

( = ((pout , pin )

      !             pout = pout (pin , q)   pout             pin              q     "                                   *              f   * f = f (pin , pout , q) +  f            pin    

         

  

    

       



     

pout

      

 

q

                      



       

    

                                                      

out

in

     

p1out         2 pipe !      pin          pipe2 !   "   p1out           

 



 



 

1

 

 

   

  

 

   

  



               

#$                  

Λpipe        Y pipe     

     2−      pout (pin , q)         % 

    

       

  &

P∆ =

λ1  λ2



Ê|Λ |+|Λ | | 1

2



λ1j

j∈Λ1



=

1

λ2j

=

1

p2,j λ2j

=

0

λ2j



0

 j∈Λ2



p1,j λ1j −

j∈Λ1

j∈Λ2

λ1j , λ1 , λ2 



      

       



 



λ−

               #           

    



,

  



P∆ &      p1out,j 

        !      

   

j ∈ Λ1



    !   

   

  

 

p2in,i



      





i ∈ Λ2 

'          (!         )

p1out,1 = 10 p1out,2 2 pin,1 = p2in,2 = p2in,3 = 

= 8 p1out,3 = 4  10, . . .   * 

       

 50.98

60.98

   

 51.01

42.53

51.18

56.97

61.01

51.01

61.01

51.01

61.01

=

70.99

67.87

 

63.02

61.52 71.01

71.01

71.01

71.01

             

λ11 =

1 1 1 1 , λ2 = 0, λ13 = 0, λ14 = , λ15 = , λ16 = 0 4 2 4



7 2 13 2 , λ = 0, λ23 = 0, λ24 = 0, λ25 = , λ = 0. 20 2 20 6    λ−                       λ21 =

λ11 =



1 1 1 1 , λ = 0, λ13 = 0, λ14 = , λ15 = , λ16 = 0 4 2 2 4

7 2 13 , λ2 = 0, λ23 = 0, λ24 = 0, λ25 = 0, λ26 = , 20 20                        λ21  λ26                                                      !                          in          out      "             #                           $ %                                           

         %   &               '                     !        (    !          λ21 =

         

1 λ1

1 λ2

10

8

2 λ1 10

4

20

16

1 λ 4

1

λ

1 λ3

5

20

12 1 λ6

2 λ4

2 λ2



2 λ3

10

10

20 2 λ5

2 λ6

20

                                                                     

                                     !" #!$            %  &

Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ú

             '              P∆          ( '          )       *

   λ−)     % P      λ−)  



   



                                    λ−                                      !         "   #      



    "            "                    $ in ∈ N              out ∈ N            %                               

      "                &          "           '      ( #    N i          i ∈ {1, 2, . . . , in + out} (  "            1, 2, . . . , in            in + 1, in + 2, . . . , in + out )   "   Ni ∩ Nj = ∅

(    

∀i = j.

N = {N i | i = 1, 2, . . . , in + out}

        ÊN    i  |N i |−        "           N   ÊN  #   i



Ê

N

=

in+out @

ÊN . i

i=1

(  '   λ ∈ ÊN " "  ⎛

⎜ ⎜ λ=⎜ ⎝

λ1 λ2



⎞ ⎟ ⎟ ⎟ ⎠

λin+out

" λi ∈ ÊN   i ∈ {1, 2, . . . , in + out} )   S       i

S = {S 1 , S 2 , . . . , S in+out }

"       j ∈

in+out A i=1

Ni



         

j∈S

∃ i ∈ {1, 2, . . . , in + out}





j ∈ Si.

 

  

S ⊆N

    

⇔ S

∅ = S i ⊆ N i

∀i ∈ {1, 2, . . . , in + out}.

  

|S| =

in+out 

|S i |.

i=1

      

S

     

XS ∈

ÊN



   

 



XjS =

  



j∈S









N i , i ∈ {1, 2, . . . , in + out}    ni

 

ni 

Ni =

Nki





Nki , k ∈ {1, 2, . . . , ni }

|Nki | ≥ 2.

k=1

n1 = 8 n2 = 9  |Nki | = 3   i, k         λ ∈ , λ ≥ 0          i = 1, 2, . . . , in + out       ki ∈ {1, 2, . . . , ni }       

!    " 

Ê

N

{j ∈ N i |λij > 0} ⊆ Nki i . !                   

S

λ− 

      

$     

P

P = {λ ∈  

A ∈

ÊM×N , b ∈ ÊM

  



X

S

          

A∈

ÊM×N





ÊN |Aλ = b, λ ≥ 0},

M A

M

      

          

%             

Nki 

       

    

       

#     

         

 

A = (aij )

       





   



 J ⊆ {1, 2, . . . , n}    AJ = (aij ) i ∈ M j∈J

  m = |M |  n = |N |      λ ∈ J ⊆ {1, 2, . . . , n} λJ = (λj )j∈J .  x ∈

ÊS  S ⊆ N     

x0 (S) =

xi 

ÊN

  x0 (S) ∈





ÊN  x 

  i ∈ S,   i ∈ N \ S.

                  N \ S  N \ S :⇔ N i \ S i ∀i ∈ {1, 2, . . . , in + out}

          S       S¯  S = {S 1 , S 2 , . . . , S in+out } 

S¯ = {S¯1 , S¯2 , . . . , S¯in+out }

  !     "    S ⊆ S¯ :⇔ S 1 ⊆ S¯1 S 2 ⊆ S¯2 S in+out ⊆ S¯in+out .

  #  $            %      $    % % &                in   out            '   %  P       P = {λ ∈

ÊN |Aλ = b, λ ≥ 0 , λ 

    }.

            %          %       $

         



     A    b       ⎛

(11 )T

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ 1 T ⎜ (p ) ⎜ 1 T ⎜ (p ) ⎜ ⎜  ⎜  ⎜ A = ⎜ (p1 )T ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ (q 1 )T



(12 )T



(1in )T

(1in+1 )T

−(p

−(p

2 T

(p ) (p2 )T





(1in+out )T

in+1 T

)

−(pin+2 )T



in+1 T

−(pin+out )T

)

−(pin+2 )T

 

(p2 )T

(1in+2 )T

 

 

(pin )T −(pin+1 )T (pin )T −(pin+2 )T

 

   

−(pin+out )T

 

(pin )T −(pin+out )T i T in+1 T in+2 T (q ) . . . (q n) −(q ) −(q ) . . . −(q in+out )T 2 T

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠

   pi ∈ ÊN+ , i ∈ {1, 2, . . . , in + out}                                   qi ∈ ÊN+ , i ∈ {1, 2, . . . , in + out}                        

             b  i

i



b=

1in+out



0in · out+1

ÊN 



        1m 

      Êm  0m     Êm         1i ∈

i



       A   !    in       λ−             out       λ− 



   



                            in + out + 1   in + 2out                            

           in + 2out + 1   (in+ 1)(out+ 1)− 1                                       

                     −1                                            A      λ   b                                                                

              !             "                                       #         p      q           1 !                          #                   $ %&                        

   

      $ "          %&                           λ−       

           '             (  $                      Aλ = b      )  A       '       |M | = in + (in + 1)out + 1 = (in + 1)(out + 1) *                

Ê

P ⊆ [0, 1]N

          λ ≥ 0             in + out      A     b     P   

        %                                     P∆ +                           !pipe1 "                  !pipe2 " #     λ−        ,             λ−      P∆            pipe1        pipe2 -   

         



                 λ− 

          P∆            λ−   pipe1         λ−   pipe2   1   

           λ−                                       

     λ−   

       P∆                     P                  rg(A)   

    A 

      S ⊆ N    

• •

     

|S| ≤ rg(A) S

   

!   L = ∅         P  " #        S ⊆ N   $  AS λS = b ¯ S  λ ¯ S ≥ 0   &  '  %          λ ¯      λS  L %                            P  (          P                )      ) *  A   +!,              # ,     b    1in+out b= 0in+out #         in + out ≤ rg(A) ≤ 2(in + out)

                 

   

                  

  

                    P      

*               )        '                  P = {x | Ax = b, x ≥ 0}            A           '   P                       '           *        P             )                                    %         

 0

   



(11 )T

B B B B B B B B B B B B B B B B B B B B B B B B 1 T B (p ) B 1 T B (p ) B B  B  B  B  B  B  B 1 T B (p ) B 1 T B (p ) B B B B B B B B B B @ (q 1 )T

1 C C C  C  C C  C C  C C (1in )T C in+1 T C (1 ) C in+2 T C (1 ) C C  C  C C  C C  C in+out T C (1 ) C C −(pin+1 )T C in+2 T C −(p ) C C  C  C C C  C  C in+out T C −(p ) C 2 T C −(p ) C C (p2 )T −(p3 )T C C   C   C C C   C   C in−1 T in T A (p ) −(p ) (q 2 )T ... ... (q in )T −(q in+1 )T −(q in+2 )T . . . . . . −(q in+out )T (12 )T

 

     A

Ì      

             P             S              

0|N |        AS λS = b

   

AS λS =

            

  

¯ S       AS λS = b     AS λ ¯S = b λ ¯ ¯ ¯  λS > 0|S| .  λ      λS   

  λ¯             P         −   > 0  λ¯      λ¯        S    ∈ S  S ⊆ N  

 

Ê

 AS λ¯S = b    AS (λ¯ S + ) = b   AS  = 0|N |

         



 ¯ = 0|S|              

 AS  = 0|N |                

       AS  = 0|N |                  ¯ = 0|S|   AS (λ¯S + ¯) = b   λ¯S + ¯ > 0|S|  λ¯S − ¯ > 0|S|     !"   (λ¯S + ¯)0 (S)  λ¯S + ¯   #

¯ (λS + ¯)0 (S) ∈ P    S  λ−    $    "

      %  AS (λ¯S − ¯) = AS λ¯S − AS ¯ = AS λ¯S − 0|N | = b     A(λ¯S − ¯)0 (S) = b    (λ¯S − ¯)0 (S) ∈ P &  

1 ¯ 1 ¯ ¯S . (λS + ¯) + (λ ) = λ S −¯ 2 2

1 ¯ 1 ¯ ¯ S )0 (S) = λ. ¯ (λS + ¯)0 (S) + (λ )0 (S) = (λ S −¯ 2 2

%  λ¯   

            P       &'

       #     '     ( $              P               P ½

       P 

&  $ in + out   A        #  

       #   !  $      S ⊆ N           X S   #  )  * (X S )T λ ≤ in + out.

&  $    P      )       P       λ−      P    )   in + out  λ¯ = λ0 (S) ∈ P   !     λS     #  #    #  S     #* ¯ = P ∩ {(X S )T λ = in + out}. {λ}

%  λ¯ ∈ P       (X S )T λ¯ = in + out  $    X S   ¯ ⊆ P ∩ {(X S )T λ = in + out}    $   {λ} ¯ ⊇ P ∩ {(X S )T λ = in + out} %       {λ}   

¯ ˜ ∈ (P ∩ {(X S )T λ = in + out}) \ {λ} λ

  λ˜i = 0   i ∈/ S    λ˜       ¯ AS λS = b            λ



   



         P 

                    P                      P   ¯         S        λ A λ = b                  A λ = 0           λ¯ ∈ P       λ¯  ! λ¯ ∈ P        &'                    P             !          "       P                                 #                λ  !      P                   λ                                              P                            $                     %           P $         & '       " n = n = 1  |N | = |N | = 3     A " S

S S

S S

|N |

S







1

1 1

2

1 λ1 p1 1

2 1

2 λ1

1 pipe

1 λ2 p1 2

1 λ3 p1 3

 

p2 1

2 λ 2 p2 2

2 pipe

2 λ3 p2 3

         P∆

         







1 1 1 0 0 0 ⎜ 0 0 0 1 1 1 ⎟ ⎟ A=⎜ ⎝ 15 10 10 −10 −10 −20 ⎠ 0 0 0 0 0 0





⎞ 15 p1 = ⎝ 10 ⎠ , 10 ⎛ ⎞ 10 p2 = ⎝ 10 ⎠ . 20



⎛ ⎞ 0 q1 = q2 = ⎝ 0 ⎠ . 0

  b  

⎛ ⎞ 1 ⎜1⎟ ⎟ b=⎜ ⎝0⎠ 0

                         A                     rg(A) = 3         S1 = {S 1 , S 2 }  S 1 = {1}  S 2 = {4, 6}  AS   1





1 0 0 1 ⎠ AS1 = ⎝ 0 1 15 −10 −20

           

⎞⎛ 1⎞ ⎛ ⎞ 1 1 0 0 λ1 1 ⎠ ⎝ λ21 ⎠ = ⎝ 1 ⎠ =⎝ 0 1 λ23 0 15 −10 −20 ⎛

AS1 λS1

       !    "  λS1

 # $    λS

1

⎛ ⎞ 1 =⎝1⎠ 2 1 2



    

⎛ ⎞ 1 ⎜0⎟ ⎜ ⎟ ⎜0⎟ ⎜1⎟ ⎜ ⎟ ⎜2⎟ ⎝0⎠ 1 2

P∆         S2 = {S 1 , S 2 }  S 1 = {2} S = {4, 5}     ⎛ ⎞⎛ 1 ⎞ ⎛ ⎞ 1 0 0 1 λ2 AS2 λS2 = ⎝ 0 1 1 ⎠ ⎝ λ21 ⎠ = ⎝ 1 ⎠ . λ22 10 −10 −10 0

    

2

rg(AS2 ) = 2         S2     |S2 | > 2    S2  S3 = {S 1 , S 2 }  S 1 = {2} 2 S = {4}     ⎛ ⎞ ⎛ ⎞  1 1 0 1 λ 2 AS3 λS3 = ⎝ 0 1 ⎠ = ⎝1⎠, 2 λ1 10 −10 0



    

          

  1 , 1     



    

  

 ! 

   "#     

⎛ ⎞ 0 ⎜1⎟ ⎜ ⎟ ⎜0⎟ ⎜ ⎟ ⎜1⎟ ⎜ ⎟ ⎝0⎠ 0 $      

P∆

%       

P∆

  

     $

   

      

         & &   &         ' (  ) $          & 

P

  $   $  *   & 

          



   $

  &   &    

         



                                

                                   P∆                                        λ−                                !                      "#$ ∆ λ     % 8 16 24 32

12 18 24 32

16 49 73 142

18 47 90 10492

25 42 670 50640

&                    P∆     '%      

                      !               (            )   )                P  *               +                                         

     P    

             l, c           P

      clin+out   ,    l∗  ∗

l :=

in+out #

nj

-

j=1

    nj , j = 1, 2, . . . , in + out              λ−           +     l∗            Nki                    .  -  / &  /       P∆    nj                  



   



λ−     m ≤ rg(A)    

                       

λ− 

         

                          j ∈ {1, 2, . . . , in j Nmax j Nmax := max{|N1j |, |N2j |, . . . , |Nnj j |} !  

j ∈ {1, 2, . . . , in + out}



        

Pin+out j=1

"      

c c

in+out # 



c :=

xj ≤m

%in+out j=1

xj  c 

j Nmax xj

j=1

+ out}



    



xj ≥ in + out !

 

                  

    # !         

λ−  λ− 

          

m

S

    

       

 $              %in+out xj λ−     λ−      j=1



   "          cl∗ 

  %

l := max{n1 , n2 , . . . , nin+out }

&           ' clin+out  ' &

     

(         

c=2 )   

c

c



Pin+out j=1

j Nmax

.

             *   

      + ,-

P∆       '            j  

   Nmax  m        !               "          

m = 3     P

    

        .      . /  

c= 

l = 40

         3 3 3 3 3 3 + + = 27 1 1 1 2 2 1

       

27 ∗ 41+1 = 432

         

1 λ1 20

1 λ2

ingoing pipe

2 λ1 20

10

1 λ3

1 λ4 30

40

1 λ5

1 λ6

2 λ5

60

2 λ2

outgoing pipe

20

2 λ3

40

42



2 λ4 40

2 λ6 60

60

          

                                                    

   S, S¯        λ−         

S ⊆ S¯

             

  

P

S

 

P

      



  

      

AS λS = b !     ¯       AS λS = b   "      S λ−    S¯i \ S i   i ∈ {1, 2, . . . , in + out}             

AS¯λS¯  

#     

AS¯λS¯ = b

= b

         

                         

S

S¯



     

            $ %    &    

S

!    

λ−  "

             

S            λ−       |S i | = 1 ∀i ∈

         ' 

{1, 2, . . . , in + out}

  '  () !     "

     

λ−  

     *   

               

S

 

|S| = rg(A)

                               ()     *     ( )

    ! 

         "    * 



   



                                            rg(A) = rg(AS )       S        P∆              

             P∆  9 n1 n2 .

 

               P∆                    9        λ−          λ−       ! ! |S 1 | = |S 2 | = 1 "            

 λ−                                  !            # "   $  %     27 n1 n2 !           3 3 3 3 3 3 c= + + = 27. 1 1 1 2 2 1

           &                          P   v1 , . . . , vk       P '                    ( ¯     )     *         λ

 aT x ≤ α    ¯−α z ∗ = max aT λ T s.t. a vi ≤ α  i = 1, . . . , k

          α ∈ {0, 1, −1} ¯−α  (¯a, α) ¯ = z ∗ ¯     a ¯T λ ¯    P  ' ( a¯T λ ≤ α

 

                       P          

  v1 , v2 , . . . , vk '      P    ( +  ∗  %k  λ ∈ P          β1 , β2 , . . . , βk  i=1 βi = 1    ∗

λ =

k  i=1

     

βi vi

         

a ¯T λ∗ = a ¯T

k  i=1

βi vi =

k 

βi (¯ aT vi ) ≤

i=1

k 

βi α ¯=α ¯

i=1

k 



βi = α. ¯

i=1

 a¯T λ ≤ α¯     P

           z ∗ > 0   z ∗ > 0     a¯T λ ≤ α          ¯ α  a˜T λ ≤ α˜         λ¯  z ∗ ≥ a˜T λ− ¯ > 0    

                P                     !   "          source

Compressor Valve sink

control valve

       

                 

 

               i ∈ Λ       yi        

 λ−                            y   

                                    #  #                                pin,C                pout,C                  qC           $    pin,P                qP   



   



                                                                           10                    !   "            #       !  

        2, y       

pin,C pout,C qC pin,P qP       3 3 3 3

3 3 3 3

7 7 7 7

4 4∗ 8 8∗

10 10∗ 20 20∗

29 6 28 7

0 10 0 204

9.39 9.36 9.16 9.15

 3.07 0.79 295.9 23.09

$  %              & 

     '              

  $  ()                 *      $  ()       '        &         P∆     *   P    + ,      

        -         +      P   P  ,      -    .            source

Compressor Valve sink

control valve

 

!  "

#$ !    % !

         



source

Compressor Valve sink

control valve

                

                                                                                                 

                 !"#$% $ & % & " ''( )              *   #    +% ,& #  , -          !              "#     $      %   +    !       .    "    # & *

 +    &  //0/1/ /  !   "#    &'(    &      '   ) %  *+ 2  33  4  



     & 5

              1      2            

    

      ! "  # $%$ &  ' 

       

 #(              )      *  #+,   - ./  "     /     "    / . 0     ) - -      "   "&            ( / "  "      /    .)     !  & 1  2)3 4 "                     / /         &   #+,      .   .   . (    "        /   .  & 2)3 4               .  &   " " / "                  &       2  +   

                                                                                                           !              

        "#$%&%$ '½ ()*+ ,)--.-/0 1

1 5367631 70 /    .  5"    "    5" " &



    

                                   

                                    

               !"  

   #         $         %         

                   &   %     '()!*+,-( . /01 233# 345    

 

     2   6)(!5                        

                      '()!*+,-(                                      7              

                 

                  %     % ) *+89 ' . /:1 2330 5   % ) )' ' . 2;; &5                -                                < = $<               $        3◦ >        

  >- 8(%69T M      T M  

>- 8(%69T M   

            8     '%! 8(%69                   >- 8(%69  ?                              ?     '%! 8(%69                             ? 2   ;5 6    

         >- 8(%69        >- 8(%69   2 3 4

      !    "  ##   "    " " $##

 % &'     !   (#        )&&*+,

 % -     !   (#        )&&*+,

            



      %                    !   " !# $     %     &       ' # #!!  (  )*+#

                    •                  •                            •

  ,"''   ( (  ((  ( #

                      !  "#$%&'(      )                  &                                                     *       #       +  



    

                                        !!         

    

                  

   

          

 

         

                                       

X(p, t, s)





 

  





p



 

               

X(p, t) = {X(p, t, s)|s ∈ (1 · · · S)} Mij (p, t) =

t      S   

   

         

X(p, t, i) − X(p, t, j) max(X(p, t, l) − X(p, t, k))



k,l

      

 !       

sim(X1, X2)

  "             #      

          

    

bsim

        

    "       

                                



(p1, t1)

    )*#+,



(p2, t2)

(pref , tref )

#          

     

bsim

 -...

(p, t) '( sim(X(p, t) X(pref , tref ))

      

        

           



         

           $%&

  

 $%&    

          

 !   

sim

 

     

            



  

                 

                                       (p, t)                                                     !                       "            #          $ %           &'''''              (&'            )         *'  )  +                     ,  %   -  .       /01                     #                                        2      "                                 3 ( 4              $     5            3 ·       Cluster(N )      · +           ·      Cluster(N )  .           · 4      $             6 +     ·   Cluster(N )        7 #   2                  

2      ,             tref                                      2        )                                 2       $      Scluster                



    



          Ci (tref )                                          

                                                                         M (C) =

 1 M (p, tref ), size(C)



p∈C

  size(C)         C  !              "

 " N         

   A        N   ◦     P    N       C   P ◦

     P            A     ◦   A   *     Q    A *  sim(M (C), X(Q, tref )) ≥ bsim  "

  Q    C "  #   Q    N "

     P               A        *   ◦   •        N                        • •

           

   

                                                  

            



sim(M (C), X(p, tref )) ≥ sim(M (C), X(q, tref )) ∀q ∈ C,   P (C) = p ∈ C

and p is the first such node in C          

N

           

                       



   

       

                                         

Scluster       T (C)    (p, t)       

 T (C)                

             

C

    tref      

t    sim(M (C), X(p, t)) ≥ bsim   C

 

p T (C)

  

(p, t)



           

    

 

simcluster

  

        

(p, t)



  !

simcluster(p, t) =

 index of C in the list of clusters, 0,

if(p, t) ∈ T (C)  else "

        "                                  #$  

       

    % &        

                     

''    (     

  $ )                                            *                 +                 "  ,      -  . .       "'  -'                     /             #                          &                 0#   ,        &        

                      &  )                 1                    )  

                      



    

                                     ! "#  $ %

  & $        '( ) % #*               ! "%  $ %

              % ' *   " ' *     $               ! ")  $ %+

            



                                  !   "    # $%    &

     

                                                                           

  

                                    !                

 "              !  

      #$%&       !             '                            '             (      '    (    (   !   

   

     

   

     )    *+,      - .            /0*-1 2        *+,   

        

               '      *+,

    #$& * ( +,3 ( 3 4

 -5 +   (            +   ( 6$7%8599:59;% 7$<<<8 #%& * ( +,3  ( 3 0=* ( .5 /                ( +   ( 9>7685:>9:<: 7$<<:8



    

                 

! "  # $ %& %! 

'())$* +  ,  -     .            & / &

& % 0 '())(*

1   2 3  0 3

 .   4 3

2& '()))* 5   2  0 6

   &

 0 "  

'$788* 9 2. ,    2 # 

3!-!:;     

     

. (5891 '$777*

8 3 <=  " . &  .  >3 "    '$777* 7 3 <= 

.        .

..  

 & ;  3   !

  '$779* $) 3?   % 2    :  !/6:":6$ "     .     <   %<< , ' *  "& 

.  ;@= -  ; 

. %   ; 7$7 %.   '$771* $$ "<<

 0  / %#0 &   &  

  ( @= .    A  " $(  

 3 - 

6

'()))*

. &   &  &

  &    %

 6. > ,%



%=  '())(* $   6 % ; ; B  :       &@     %  # '$77+* $+  

2 %  B& 2  /:!;

  # .. &

   0 3  :@ 6 '* $5 3  ())) "  3 '()))*

% B

% 6 / ;@ @ =

               

           1,2 1 2

                     ! "    # "      " $ " %

&' (  )   ! "

         

     α  α                                                α                   !          α         

  "#$% "#&%     α   ! ' > 3 × 1015  (     !      !      !             ' (    )                  > 1000 −1  (     α    *                  !    +  !     ,              +      α      -        (                     -    "#.%  !      !          "#% "/% 0 

       1  !   !                    ".% "2% 3    )                       (   !            !    )                    '  



  

                                                 

                                           ! "  #             $     %        &        ' "                                   $    10%                            (α  $        )   *     $         &          " +            ,       & $       - . 

                /               $    0     *

                           1       

     '   &   Ω ⊂ R3     $   I

 $             n · ∇x I(x, n) + κ(x)I(x, n)  $ " 1 +s(x) I(x, n) − P (n , n)I(x, n ) dt = f (x), 4π S 2

!

 x ∈ Ω        n                dt       S 2                          κ(x)        s(x)         P          % 1 P (n , n) dt = 1    

   4π f (x) = κ(x)B(T (x)) + (x)

#!

     

            T (x)      

  (x)         2 B   3 )4         !         I(x,

n) = g(x, n)          5 6 7 Γ− = {(x, n) ∈ Γ nΓ · n < 0}  nΓ             

 Γ         nΓ ·n      56   7     

   '                    g  %  

              



                A         I                       

AI(x, n) = f (x).

                                  !                   I                     "         h = 1/1000    1000          1012 #    $   %                        &             

              '("               )           *#              

       

      +,-          

  W = I ∈ L2 (Ω × S 2 ) n · ∇x I ∈ L2 (Ω × S 2 ) ,

.

 L2  /          !                 g(x, n) = 0    

  W0 = I ∈ W I = 0  Γ− . , !                #                       ϕ(x, n)          Ω × S 2  0 1        L2             

2

Iϕ dt d3 x.

(I, ϕ) = (I, ϕ)Ω×S 2 = Ω S2

   #     3 )  I ∈ W0    (AI, ϕ) = (f, ϕ)

∀ ϕ ∈ W0 .

∀ ϕ ∈ W0

4

!      s(x) = 0  Ω                   Ω           !             

           #           5              6     3



  

(AI, ϕ + δn · ∇x ϕ) = (f, ϕ + δ n · ∇x ϕ)                

 

κ

s

δ

∀ ϕ ∈ W0 .



       

           

       

          

  

  !               "

  #$

%           % 

    

Wh



 

W

       

             

h          %   K  h|K = hK =  K             



Ω × S2



     % 

Ih ∈ Wh 

∀ ϕh ∈ Wh .

(AIh , ϕh ) = (f, ϕh )       

Th

Wh

&

    

 '(      

            !     ) * 



     



  

   

 +    

  %    

%    

t

S2

Kx 



          

Ω × S2

  

    

               

      

x

R

3

Kt

" 

        

   ! 

,     



     %  -    

               

h

   

     .

                            



        

    -   *    

      

    



             *   /      %

 

   

          /

   

     



S

  

 

     

 T + D + S + χ(x, ν) I(x, n, ν) = f (x, ν).

      



T

 23 4  

D

   

 %  

T I(x, n, ν) = n · ∇x I(x, n, ν), ∂ DI(x, n, ν) = w(x, n) ν I(x, n, ν),  ∂ν  σ(x) ∞ ˆ , νˆ) dˆ SI(x, n, ν) = − R(ˆ n, νˆ; n, ν)I(x, n ω dˆ ν. 4π 0 S2

01 

              



                    I               x    n        dω      S 2     ν        χ(x, ν) = κ(x, ν) + σ(x, ν)         κ(x, ν) = κ(x)ϕ(ν)      σ(x, ν) = σ(x)ϕ(ν)              ϕ ∈ L1(R+ )   !  "   1  2 2 ν − ν0 1 ϕ(ν) = √ exp − , ∆νD π ∆νD

##

!  ν0           "  ! ∆νD   "    vD          vtherm  

    !       vturb ∆νD =

ν0 ν0 vD = c c

 2 2 vtherm + vturb .

#$

       %    !  vturb  vtherm  "        !     &   !  '     "            %    c

f (x, ν) = κ(x, ν)B(T (x), ν) + (x, ν),

#(

!                )          f            T (x) !  B(T, ν)   * +     ," -    D      "        .              v/c < 0.1      /#01 )               /##1 !             2        v(x) w(x, n) = −n · ∇x n · #3 c          v(x)    n 4 

   w  

             v        S            R(ˆ n, νˆ; n, ν)     

  (ˆ n, νˆ)      (n, ν)     )  ! !        s(x) SI = − 4π



∞ R(ˆ ν , ν) 0

S2

ˆ , νˆ) dˆ I(x, n ω dˆ ν,

!  R(ˆν , ν)          

#5



  

R(ˆ ν , ν) =

1 (4π)2



 ˆ , νˆ; n, ν) dˆ R(x, n ω dω.

S2

S2



           

∞ ∞ 

R(ˆ ν , ν) dˆ ν dν = 1. 0

0

       

   

   

    !   

 "  #     $  "

R(ˆ ν , ν) = ϕ(ˆ ν )δ(ν − νˆ)



R(ˆ ν , ν) = ϕ(ˆ ν )ϕ(ν).

%

    

$  

      $          

S coh I(x, n, ν) = −

σ(x, ν) 4π

   

       $ 

 S2

ˆ , ν) dˆ I(x, n ω

&'

        

 $           "   

 #  $    !

   

S crd I(x, n, ν) = −  

   

σ(x, ν) 4π







ϕ(ˆ ν) 0

S2

ˆ , νˆ) dˆ I(x, n ω dˆ ν.

&

 $     (   

      

$       

    

 )           

 ( *α  '#

    +      

       $

 ,         "

  *α$    Λ := [ν0 , νN +1 ]$  ν0

 

νN +1             

#   ! w(x, n)   -,# .    /           w < 0   w > 0 ,  

 "  # !  $   

      I(x, n, ν) = Icont (x, n, ν)   



 

     ,  "       

  !

Σ = Ω × S 2 × Λ# +  $    " -,# '$   

      I(x, n, ν) = Iin (x, n, ν)      0 1    2 Γ − × Λ = {(x, n, ν) ∈ Γ | nΓ · n < 0}$ nΓ    "            Γ        Ω #        nΓ · n     01    2           #     

   Icont = 0     

              



                     

   

     Iin = 0                              Σ,  Γ − × Λ.

I(x, n, ν) = 0 I(x, n, ν) = 0

 

       

      !                  " #       #$%                 &' (" ) N                      

              νi ∈ ν1 , ν2 , ..., νN ⊂ Λ" )                 *      !          +      !       *      ,      N              -./" #                                   S crd   ," " 0     N             νi ∈ ν1 , ν2 , ..., νN ⊂ Λ  N   q1 , q2 , ..., qN   *      Q(νi ) :=

N 

qj ξ(νj )

.

j=1

    

 Λ

ξ(ν  )dν  " 1             ξ(νj ) =

ϕ(νj ) 4π

 S2

ˆ , νj )dˆ I(x, n ω.

2

0               Ii           Ij     !         σi ϕi qi 4π



 N σi  ˆ , νj )dˆ Ii dˆ ω+ ϕj qj I(x, n ω. 4π S2 S2

3

j=i

%              ,                                                " |w|νi $ + Acrd Ii i ∆ν  N σi  ˜ ˆ , νj )dˆ = fi + ϕj qj I(x, n ω, 4π S2 j=i

4



  



 

                  

                       ˜ crd Ii = fˆi . A  i               Acrd = T + χi + ϕi qi S coh . i

 !

Acrd u = f .

"   #         $        %      &    ⎛

Acrd

˜ crd A 1

⎜ ⎜ B2 + Q 1 ⎜ ⎜ = ⎜ Q1 ⎜ ⎜  ⎝  Q1

R1 + Q2

Q3

˜ crd A 2

R2 + Q3

...

...

 

 

. . . QN

  

     



⎟ ⎟ ⎟ ⎟ ⎟. ⎟ ⎟ ⎠

 %

˜ crd ... A N

'       w(x, n)   &    Ri  Bi   (    w(x, n)νi/∆ν                 #  $   &    Qj          (   )         #           

     

    $   *#     N +    ,  $      

˜ crd ui = ˆfi , A i

        ˆfi = fi + Ri ui+1 + Bi ui−1 +



Qj uj .

 

j=i

      

                  $    #    #             -   .                    $                    

   /# # 0 1 #         2  #          3 % .   I = 0     

              



    i = 1, .., N                                 ! !   "      "          [ν1 , νN ]           #      "    !        $      %   &     !               nout  '     

!                 " &    !  ( #       "     )    !  ηK = max(ηK (νi ))|νi   &         ηK   ηK (νi )      

      K   νi      *+ , - 

   #       !     !!  %  " $   & . χ(x) = χ(x, y, z)    ! ⎧  r ≤ rc ⎨ χ0 /(1 + αrc2 ) χ(x) = χ0 /(1 + αr2 )  rc < r ≤ rh ,  ⎩ χ0 /(1 + αrh2 )/103  r > rh   r2 = x2 + y 2 + z 2  '      & .           rc      rh  χ0   ! !       rh τ= χ(x)ϕ(ν0 ) n dx / rc

$ rc  rh      n 0    "  $  χ   ! $    ! (   rc  rh  !  ! α     τ  1 rc rh  α       #$ 2      !           "   3 4α  ! σ(x) = χ(x)  κ(x) = 0        #          " !   "  0           

 rs      xi = 0(  ϕ(ν)  |x − xi | ≤ rs f (x, ν) = . 5 0  |x − xi | > rs



  

 

                      rh



rc

α

rs 3



10

vD −3



10

v0 −3

−10

c

c

r0

R0





   ϕ(ν)                                                                n     

 ! "   "              w  

           

  # " v0 < 0  # " v0 > 0       vio = v0

" r $l x 0 , r r

$%

" r = |x|  v0        r0      w   

 " r $l  1 |nx| 0 − (l + 1) 3 w(x, n) = v0 $& . r r r          " 

       z '

 vrot = v0

R0 R

l



⎞ y R−1 ⎝ −x ⎠ , 0

$(

" R2 = x2 + y2           '  v0         R0   n = (nx , ny , nz )  w   

 w = v0

R0 R



l (l + 1)

xy(n2y − n2x ) + nx ny (x2 − y 2 ) R3



.

)*

   "              +                ,   )  



    (ν − ν0 )/∆νD = [−4, 6]  &*    - "    43 

       "  $./                "                   + τ  0 '            #' Fν     τ                   " 

 

 

        τ = 0.1  τ = 1     

  " " "  "  1           τ = 100

               a)

b)

0.1 1 10 100



0 0.5 2

0.034 0.032

0.02

0.02 Fν



0.030 −0.5

0.00 −4

−2

0

0.0

2

0.5

4

0.00 −6

6

−4

−2

0 (ν−ν0)/νD

2

4

6

−2

0 (ν−ν0)/νD

2

4

6

(ν−ν0)/νD

c)

d)

0.1 1 10 100



0.02



0.02

0 0.5 2

0.00 −6

−4

−2

0 (ν−ν0)/νD

2

4

6

0.00 −6

−4

  α                    !  " #       !$ #  % !     !$ #           $  #  % !         &      #  #          '    τ  &     # !  (   &    (         &    )!     #      τ = 1 *  #  τ = 10 *(  #   #    τ = 10& +$       ,  l     )   &         

         

               

          !        #  $   

    

 

  

   "       

   !   

l

  % &'()            

    

τ =1&

vio

   ) *

                      + 

 "

   

      

   

   



l

   #

τ = 10

          ,             



  

    &     )   

             

   

          

     

      

l = 2

    

      

                -     



  

              

    

                           

   



  

   

 

                    !  

τ

"     

               

 

τ ≥ 1

    

   #$

   

  

τ



       $                

 '    ()* 

  

    

 %&

τ = 100

 !       %          τ

= 10  

& l  l

= 0  l = 0.5

 %  

          #$   +   %       $ , 

l = 2

  $

       %      '     & '

 &           

       

 

     

  

 #    '   

 -       '         '        '           #



      #     

     

103−4

      .α       $    τ   

≤ 102    

        



       '      & 

'     /



-    

τ ≥1

 

      $ 

          &     

  0!12

              

 3     '



    

    

  4 '             4   $          %      $     %   ,

    ' 

               &   5            $  

                  





  & #  

 $   



              



                                    

                     

   

    

                            ! " #$    %

  &        '   (   (  )   *  +       ,           -        .-*/     '0 !1# 2(    -     ,  3

  $   ,4 ,               5    6 78 8!# . #79/ 9$  ': ; :) ; : 4 ;α             <           : <   6 118 =>8= 8 .9>> / !$  ': ; :) ; : 4 ;α             << %           : <   6 1=7 #99#!> .9>>9/ 8$ 0&  +4    '

       *    ?    @ &  -      -    A    B :   . ##=/ 1$ -  ( ;  6;4         C 

     '   , ? = '

  0   :   C D  .9>>>/ =$ :   -* +  E F04 %                 6 9!= =>#= " . #">/ 7$ +  *4 F      *              F- ,  A     :   . ##=/  4GG      G!1#GF 

  ##=  "$  & % (   '4 (           << ;α         H !#9 "97"!# .9>>9/ #$  & %4               A   F- ,  A     :   .9>>9/  4GG      G!1#GF 

 9>>9   >$     -4'        '     . #7"/  $     - )     04     (   :  

 I  A    F  C D  . #"8/  9$ C  -4 ,                  6 !1> 9 =98 . ##>/  !$ (   '  & % + E  C +   *4 (            < 0        H !"> 77=7"" .9>> /



  

                   

!" # $  %"&'( ) " *  +

  ,

α

= 3.6

    ",

!" - .. /0, 12234

0            (5) 6 $ 7! ( "' ! *  5  ! *)) 5 "' ! ! )5! ' ) " * 5 - .8 .09,.9 12284 3 6!5 5 !  " 6)'5 6 $ 7! ) :(5 " "' )  "  "  ) $ ; 5 1/<<<4

55(% "5 ) '"( - .02 89<,898

             

              

       

                            

             

                  

                       !      

 

                                        !          "            #    !        $   #   

       %               &       ' (     &                

   &   %     )            *               %                  +        

                  %                   %      *    

            %             ,    &                                            "             %        



  

        

         J(x), x ∈ Oad  x                    Oad                                                            !                                          !                                      "#$%                     

&                        ' 

M (ζ)xζ = −d(x(ζ)) x(ζ = 0) = x0

"(%

) ! ' • * d = ∇J  M = Id            • * d = ∇J  M = ∇2 J "  ! %     +  " , + %   *         ' • -(' J ∈ C 1 (Ωad , Ê) • -.'   /  Jm                   • -0'      '   /            ' ∃xm ∈ Ωad , s.t.J(xm ) = Jm  • -1' J   " J(x) → ∞  |x| → ∞% 2     "(%      x0 ∈ Ωad     / / Zx    J(x(Zx )) = Jm ' 0

0

⎧ ⎨ M (ζ)xζ = −d(x(ζ)) x(0) = x0 ⎩ J(x(Zx0 )) = Jm

".%

                       345 "   / 6% 3                  !

          

Zx0



             

                                  

 

                    

              

         

⎧ ⎨ ηxζζ + M (ζ)xζ = −d(x(ζ)), ˙ = x˙ 0 , x(0) = x0 , x(0) ⎩ J(x(Zx0 )) = Jm      

|η| << 1

!"

    

ζ

  



                          

x0 = v



#"

 

x(0) ˙ = v  !""           h(v) = J(xv (Zv )) − Jm   xv (Zv )         ζ = Zv    v   A1 (v1 , v2 )  

    #"   !""   

• • •

(v1 , v2 )   v ∈ argminw∈O(v2) h(w)    h(w) = J(xw (Zw ))−Jm   xw (Zw )        #    ζ = Zw   

 w  O(v2 ) = → } ∩ Ωad  {t− v− 1 v2 , t ∈

Ê

   

         $       

                         

A1  % v1    %  v2   h2   h2 (v22 ) = minv22 h(v22 )     A1 (v1 , v22 )          A2 (v1 , v22 )

     

• • •

(v1 , v22 )   v2 ∈ argminw∈O(v22 ) h2 (w)    h2 (w) = h(A1 (v1 , w))  O(v22 ) = −−→ {tv1 v22 , t ∈ } ∩ Ωad 

   v2

Ê

                                           

i

hi (v2i ) = minv2i hi−1 (v2i )



Ai−1 (v1 , v2i )

 

h1 (v) = h(v)

      

              &       





  

 

Bε (xm )



ε



   



     "          h      



T

(J(xv (τ )) − Jm )2 dτ,

h(v) = T1



0 < T1 < τ < T



  

 xv (τ )            T1 = T /2              xw (Zw )        

  

 [0, Zw ]   Jm       Jm = −∞   

      

       

              !                          

 

"       

        

#           $

  %   

#    

      

   $  h(v) = J(xv ) − Jm   

    

 v  h

       



  

  

   !           dn = ∇J n   !                   

  %   1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

-1

-0.5

0

0.5

1

1.5

2

    J(x) = x sin(20x) cos(x) + |x|0.1          

Jm = 0      h(v) = J(xv )        v             ([−1, 2])    !    "         "          !                         !        

   h(v)   # 

    

        J(xv ) − Jm  & h(v)  

      



             

    



     

= x sin(20x) cos(x)+|x|0.1 Jm = 0             h(v)                     [−1, 2]  

             J(x)  

 

                  

          !      

   " 

4

4

3.5

3.5

3

3

2.5

2.5

2

2

1.5

1.5

1 4.5-20

-10

0

10

20

30

40

1 4.5 -20

4

4

3.5

3.5

3

3

2.5

2.5

2

2

1.5

1.5

1

1

0.5

0.5

0 -20

-10

0

10

20

30

40

0 -20

-10

0

10

20

30

40

-10

0

10

20

30

40

                            !      "   # !  $              %     & '   "    '   (     



) )   *  +       & ) '   "    '    

 ) )         !                 '   "   (  

 ) )   *         !  "              )         #    

              "               #             "    !     "    $ !                                       "   



  

                                                           

                                                                                                                                                                         !                 "     

 "       

        #                                          #      $ !  %&' J(x) = 74 + 100(x2 − x21 )2 + (1 − x1 )2 − 400 exp(−10((x1 + 1)2 + (x2 + 1)2 )).

(             $          #       (1, 1)   J(1, 1) = 74&              (−0.90, −0.95)   J = 34 $ !  )&       Jm = 0        J(x)

                           % I cos(xi − 100) + 10−6 Ii=1 (xi − 100)2 , x ∈       J(x) = 1 − Πi=1 [−600, 600]I  I = 5, 10  20                      *

      



4000 3500 3000 2500 2000 1500 1000 500 0 2 1.5 1 -2

0.5 -1.5

-1

-0.5

0 -0.5 0

0.5

1

-1 -1.5

1.5

2 -2

             J(x) = 74 + 100(x2 − x21)2 + (1 −

                      

x1 )2 − 400 exp(−10((x1 + 1)2 + (x2 + 1)2 )).

400 RECURSIVE 2 Layers Conjugate Gradient (Recursive 1 layer) 350

300

250

200

150

100

50

0 0

1

2

3

4

5

6

7

          !    " !    #    $     $  !  "  %#!   



  

2 1.5 1 0.5 0 600 400 200 -600

I P

-400

0 -200

0

-200 200

400

-400 600 -600



I        J(x) = 1 − Πi=1 cos(xi − 100) + 2 I ρ i=1 (xi −100) , x ∈ [−600, 600]           

     I = 5, 10  20

                                                                                   N=5 N=10 N=20

100000

1

1e-005

1e-010

1e-015

1e-020

1e-025

1e-030 0

200

400

600

800

1000

1200

1400

1600

                                

  

!       

      



      

 

          

                                             

  

                                                        

            

               

                              

 !" #$ %      

    &        

          





  &'    

       (      

     )                      

                     *     

                        + •    )    

 •         

         •      

     •       

 •         ,     #'  &-'            

             

                    

  

     

 &'' µm  



   &' µm           

    ./0                   %        .

  1 

        2)               !#$                         

           

      )                  Γ    Γ    

+   ds ds − ) . J(x) = ( 345 V.τ V.τ i

o

2

Γi

Γo

            

       

        67/8 !-$        

V.τ



  

                    

                    

  

J(x) : x → q(x) → U (q(x)) → J(x, q(x), U (q(x))).    

J



   

∂J ∂J ∂q ∂J ∂U ∂q dJ = + + . dx ∂x ∂q ∂x ∂U ∂q ∂x "      

    

!

#$%         

                          



  

 

J

    



J





    

x

    







J(x) =

f (x, q)g(u)dγ,

   

 

          

     

  



           &  

 

         ! '         

 

J = an ux (a)

     (    

   &  

   )  &*

 

−uxx = 1,        



      

n • •



], 1[, u() = 0, u(1) = 0,

u(x) = −x /2 + ( + 1)/2 − /2 2

'     

        

    

    &    

  (  

         

   

J

  

    

      



   

J () = n−1 (nux () + ux()) =

n−1 (−n( + 1) − ). 2

                          '              (   

 

n



      



                  

           

                     ˜ ˜       ∼ U (q(x)) 

 U      U(x)                  !         "       J      x               #     $  U˜           ˜ /∂x %         U      

   ∂ U              

     

    &      #   

    

˜ (x)( U (q(x)) ). x → q(x) → U ' ˜ U (x)

 # U (q(x))/U˜ (x)     ˜ U (q(x)) ∂J(U ) ∂J(U ) ∂q ∂J(U ) ∂ U dJ . ≈ + + ˜ (x) dx ∂x ∂q ∂x ∂U ∂x U

(

)                   ' * U = log(1 + x)        J = U 2  dJ/dx = ˜ = x  2U U  = 2 log(1 + x)/(1 + x) ∼ 2 log(1 + x)(1 − x + x2 ...)   U          x = 0 "                J  ∼ 2U U˜  = 2 log(1 + x)  J  ∼ 2U U˜ (U/U˜ ) = 2 log(1 + x)(log(1 + x)/x) ∼ 2 log(1 + x)(1 − x/2 + x2 /3...).

)    

              +                             E  "              J(x) = (

Γi

ds − τ µek |E|



Γo

ds )2 . τ µek |E|

,

"       -                  .+ / "                           ( "                          !        0         1   !    ,2  3(2         ,4 32 "   #     ,2  3(2          33435



 

0.012

0.005

USING THE EXACT GRADIENT USING THE INCOMPLETE GRADIENT

EXACT GRADIENT INCOMPLETE GRADIENT

0.01 0

0.008

0.006 -0.005

0.004 -0.01

0.002

0 -0.015

-0.002

-0.004

-0.02

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

         

        

   

 

            !  " 

        "       # !    



      "

  $            % 

  &            %   

      



              

  !"    #     $          %  



  !"         $          %     





  

 

                                                                                                                                                         !         

  "          #   !       $ #       "  "                  %         "

   

&'(  % )  *+                             $     ,  ½  -'./-01 2'..34 &5( )  ) $ # ) * $ 6+     #  )  7    6     )    89:'/ 89:. 2'..:4 &8( ; )6 ;  $+           <        )     '/'3 2'..-4 &0( ; = 7 =>+ 6  % =  2'...4 &-( 7 + 7                  ? @" 2'.:.4 &3( % ; 6 A+ 6         #         *  B    ;    -C511' -9-/-.- 251114 &9( 6 A #  $%+ = ,      D ,  =  251154 &:( 6 A =  +          !    E  =   251114 &.( =   *;+ =    %      2'..-4

               1    1    1     2 1

             

2

    

! " #$ %&& '  (#    ) *# + ,,- * ./

  



     #!0##!   #$ ! #& &&  

)     &#     ! !  #$ # #" '1! $# &  

  )+   # #  ## &  #&& "

  !!  )

$#&   # &0+  ##  &#  #$  +  )#   

   $ "  &! #$ #!0##!  ! #&  # # ) #  $&+  #   #  &   !#  #"   #!!#  # )+ # 2 !  )& +    ! &  3& 

" 4 &#&! #$ #!0##!   !   &  # & !  ! #& # 5 # $# & !          $&+  #  # !   ## $ # $" 4 &#& #$ # !     &  # !  #  # #   3&  +  &# #  &&#!    ) #!   #! 6 #  # "

 

           !" "# ! $ !   %       $   ! #     ! $ &' (     &&   ! ' ! % )    $ $       %  )   $  )   *! %+ #  ,    &         ' ! -  !! ' &  !.      $ '   !  %   "! $   / -      ,  &%        ' & %  $ -         !  $          '&   ! $   # !   && 0



            

     !" !

 #$ %   &""'())$$$*! "*)!" +

                                                                   

                                                                                   

       !                                     !        "                            

               #             $  "                       %     

                   

                           

                     !             &                 '    (  )             

               *% + +  ,   -       .)/ %  !                                          * 0 .1/  

                        2           !             '  .33/   !                          

          



 

                                                              

                                                                                                                                !                                 "                     #                                      

     $%     &'()   

         $%     &*()                       %   &+(              ,      

             -             . /  0              

(x , y ) b

b

k tors u tors b

btors

d l

l

y k

u x

b

SEA

x

              



            

  

     

  

                                            

                                       

                                                  !             "                                 #                   

   

       $                % &             mb  Θb #       ml  Θl #               d#     l0 #     

       ktors  btors#         

 ∆ϕ#       

       k  b         '                                                     #       

   !               (   !  #            $              q = (xb , yb , ϕb , ϕl , ϕl )T #   

      q˙#   xb  yb                      #  ϕb  ϕl # ϕl                          xl  yl             d  xl = xb + d sin ϕl ) yl = yb − d cos ϕl . %     l    l0 + u0         !                           i  * yb li = ⇒ + cos ϕ 1

1

2

2

i

i

i

i

i

i

li

sin ϕli y˙ b + yb ϕ˙ l . l˙i = cos ϕli cos2 ϕli i

,

        -    * ) uSEA,1# uSEA,2 .      /0$ 

   *     &    )1 #      

       

    k       b    %    

          



uSEA,i ≥ 0                               ∆li =

yb − r + r − uSEA,i − l0 cos ϕli



    uSEA,i               i                      

     uSEA,i  !         i                        "                    # utors,1 $ utors,2 %  !                   ktors $ btors $  &   #  !                     '()  ⎛ ⎞⎛ ⎞ x ¨b m 0 0 ml d cos ϕl1 ml d cos ϕl2 ⎜ ⎜ ⎟ 0 m 0 ml d sin ϕl1 ml d sin ϕl2 ⎟ ⎜ ⎟ ⎜ y¨b ⎟ ⎜ ⎜ ⎟ ⎟ 0 0 θb 0 0 ⎜ ⎟ ⎜ ϕ¨b ⎟ = ⎝ ⎝ ml d cos ϕl1 ml d sin ϕl1 0 θl + ml d2 ⎠ 0 ϕ¨l1 ⎠ 2 0 θl + m l d ϕ¨l2 ml d cos ϕl2 ml d sin ϕl2 0 ⎛ ⎞ 2 2 ml d(sin ϕl1 ϕ˙ l1 + sin ϕl2 ϕ˙ l2 ) ⎜ ⎟ −ml d(cos ϕl1 ϕ˙ 2l1 + cos ϕl2 ϕ˙ 2l2 ) − mg ⎜ ⎟ %2 ⎜ ⎟ * ˙ b − ϕ˙ li )) ⎜ ⎟ i=1 (utors,i − ktors (ϕb − ϕli − ∆ϕ) − btors (ϕ ⎝ −utors,1 − ml gd sin ϕl + ktors (ϕb − ϕl − ∆ϕ) + btors (ϕ˙ b − ϕ˙ l ) ⎠ 1 1 1 −utors,2 − ml gd sin ϕl2 + ktors (ϕb − ϕl2 − ∆ϕ) + btors (ϕ˙ b − ϕ˙ l2 )   m      m = mb + 2ml  utors,1  utors,2    !       +  #$   (                  &,     $     &,            -).                  ('/                           x˙ b + (yb + yb tan2 ϕl1 ) ϕ˙ l1 + tan ϕl1 y˙ b = 0.

0

. 

   !                  !                  (.) 0

m 0 B 0 m B B 0 0 B B ml d cos ϕl ml d sin ϕl 1 1 B @ ml d cos ϕl2 ml d sin ϕl2 1 tan ϕl1

10 1 ml d cos ϕl2 1 0 ml d cos ϕl1 x ¨b C B y¨b C ml d sin ϕl2 tanϕl1 0 ml d sin ϕl1 CB C CB ϕ θb 0 0 0 ¨b C C C B Bϕ 0 θl + m l d 2 0 yb (1 + tan2 ϕl1 ) C ¨l1 C C C B A@ϕ 0 0 θl + m l d 2 0 ¨l2 A 0 yb (1 + tan2 ϕl1 ) 0 0 λ



            



⎞ ml d(sin ϕl1 ϕ˙ 2l1 + sin ϕl2 ϕ˙ 2l2 ) + (Fk + Fd ) sin ϕl1 ⎜ ⎟ −ml d(cos ϕl1 ϕ˙ 2l1 + cos ϕl2 ϕ˙ 2l2 ) − mg − (Fk + Fd ) cos ϕl1 ⎜ ⎟ %2 ⎜ ⎟ ˙ b − ϕ˙ li )) ⎟ i=1 (utors,i − ktors (ϕb − ϕli − ∆ϕ) − btors (ϕ =⎜ ⎜ −utors,1 − ml gd sin ϕl + ktors (ϕb − ϕl − ∆ϕ) + btors (ϕ˙ b − ϕ˙ l ) ⎟ 1 1 1 ⎟ ⎜ ⎝ −utors,2 − ml gd sin ϕl + ktors (ϕb − ϕl − ∆ϕ) + btors (ϕ˙ b − ϕ˙ l ) ⎠ 2 2 2 −2 · cos−2 ϕl1 ϕ˙ l1 (y˙ b + yb tan ϕl1 ϕ˙ l1 ) Fk

Fd yb Fk = k ( − l0 − uSEA,1 ) cos ϕl1 tan ϕl1 y˙ b Fd = b ( + yb ϕ˙ l ). cos ϕl1 cos ϕl1 1



  

  

 

                                         

slif tof f = l0 + uSEA,1 −

yb =0 cos ϕl1



             



    !

clif tof f = y˙ b > 0.

"                      !                     # 

stouchdown = yb − l0 cos ϕl2 = 0. "

$

               %   & '

ctouchdown = y˙ b + l0 sin ϕl2 ϕ˙ l2 < 0. "   ( %   (  

    %   

   %          (  

(    )

     #  "           %    (            )        )   

ϕli

     

ϕl1 ↔ ϕl2 

"  

  

  )   (     %(     

 &



 )  

   %     )   &

x˙ contact = x˙ b + l0 cos ϕl,2 ϕ˙ l2 + y˙ b tan ϕl2 + yb ϕ˙ l2 tan2 ϕl2 = 0 •

           % &

Htrunk,hip = Θb ϕ˙ b = const. •

*

+

               % 

Hswingleg,hip = (Θl + ml d2 )ϕ˙ l1 = const.

           •



       

         

Hrobot,contact = Θb ϕ˙ b − mb (yb − yc )x˙ b + mb (xb − xc )y˙ b +Θl,1 ϕ˙ l,1 − ml (yl,1 − yc )x˙ l,1 + ml (xl,1 − xc )y˙l,1



+Θl ϕ˙ l,2 − ml (yl,2 − yc )x˙ l,2 + ml (xl,2 − xc )y˙l,2 = const.   xli  yli           

xc = xb + l0 sin ϕl2 yc = yb − l0 cos ϕl2 . •

 

                  

         

m(x˙ b sin ϕl − y˙ b cos ϕl ) − Fkd = const.



             !     xb                ! "

               qred (T ) = qred (0)  q(T ˙ ) = q(0) ˙      T          # !

     $                #            ! "               %  &'(  %    ! &(!     )       #                       ! "   )  *+                        #      !

            ,         #    +              ! -   )           .   C   /  0            ! $               

                                       %    ! &(! ,       

  +       

  +       +       ! ,          +  1     



             Outer optimization loop

Inner optimization loop Stability optimization min φstab modify model parameters (mass, inertia, geometry ...)

Solution of periodic optimal control problem minimize energy for given parameters modify initial values, actuator inputs, cycle time

    ! " ## $ % ##& # %  

                                            min |λmax (C(p))|,  p                         •   !        "   C        "  #       !    •       C      $             %" !          &         "     "    '   "          "   (    '             " !                  )           "               "            $    *+ !        "   n + 1        n     %

!       

       "         !           ,     ! '             !  '          '   "  "   "  -!          , '              "    !    " '   

          



                                

                                  

          !              !         

        "              

    #       u$ %                

      

         &                          

             

     

   ' 

T

||u||22 dt

min

 

x,u,T

0

x(t) ˙ = fj (t, x(t), u(t), p) x(τj+ ) = h(x(τj− ))

 *+,

gj (t, x(t), u(t), p) ≥ 0



t ∈ [τj−1 , τj ], j = 1, ..., nph , τ0 = 0, τnph = T

#()$ #(-$ #(.$ #(/$

#(0$ #(1$ %               234* #5 6 7  8(9 :  8-9$         ;     •                          •                                           %            

                      

     

' •  <     3=7           #     :  8-9$ •             "          

        #5 8>9$ req (x(0), .., x(T ), p) = 0 rineq (x(0), .., x(T ), p) ≥ 0.



            

                                                 

               

           

• • •

               

     

             

                         

l0     mb         

           

  

       

   !

!  "#" !  $ !$

                         !"  #  $        %  & 

mb = 2.0 Θb = 0.3465 ml = 0.2622 Θl = 0.182 d = 0.11 l0 = 0.5 ktors = 11.08 ∆ϕl = 0.5

btors = 9.989 k = 606.8  b = 42.48 % '( &         T = 0.5476s     Tcontact = 0.2533s  Tf light = 0.2943s                         

xT0 = (0.0, 0.4777, −0.1, 0.3, −0.7, 1.240, −2.490, −0.3941, −0.8908, 2.032) xb (0)     xb (T )                0.4637m  

 )   

      '

         "          

          



                  uSEA2                                 xb                         |λ1 | = 0.6228 |λ2,3 | = 0.8168

|λ6 | = 0.0515

|λ4 | = 0.8168 |λ5 | = 0.5373

|λ7 | = 0.0001 |λ8,9 | = 0.0

           !    "      "                                                            #                        !                $                                                       $       yb  ϕl1 %  & %'()          )              "              *          x˙ b +'. - '. y˙ b +(. - . ϕ˙ b +'. '. ϕ˙ l1 +/. - '. ϕ˙ l2 +- . . 0                 xb ϕb yb ϕl1 ϕl2

+,--. (. −0.046% +0.05% +0.184% −2% +(. - '.



            

   !"!  #!"$ ! " !

%  " "  !&  "!

          



                

ϕb

                    !         "

Θb ml Θl d ktors

# $#

∆ϕ btors k b

% $% % $# %

$#

% $%

%

$%

& $# #

$&

& $'

6 5

x_b

4 3 2 base solution perturbed solution

1 0 0

1

2

3

4

5

t

0.3

0.65

0.2 0.1

0.55

phi_b

y_b

0.6

base solution perturbed solution

0.5

0 -0.1 -0.2 -0.3

0.45

base solution perturbed solution

-0.4 0.4

-0.5 0

1

2

3

4

5

0

1

2

t

3

4

5

t

0.4 0.2 0.2 0 phi_l2

phi_l1

0 -0.2 -0.4

-0.2 base solution perturbed solution

-0.4 base solution perturbed solution

-0.6 0

1

2

3 t

4

-0.6 5

0

1

2

3

4

5

t

                   ϕb       



            



                                                                                                                             

                                                       #$%$ &%' $%#(#  !)*

!"   

"     + %## ,  #%- $#%  %# . % # $ #% . -#%  #  -  $ /        !   " # - $ 0102 /#  #%  3 #% . , # #% 4#  !)0 " /5       #$

$%%&& &% '%   % %  &  66  0"   %7   ()  * +      ,   

       -  ( +    #$%$ &%+ ' $%#8 . %   !))) 9/+3 #$ %##  %# % : ;!  *" 5    $$%' %-  %          -    06
# # 7 % # # %$ $8-##% 8 $#  7%# # .  /    (((             

 8 66! "               >-+$#  $ #% . - %% -#%  #  -  $ %  #%$    /  0  +  .  + . 1/++2 66  )"                #  +  --% 7%# # .   7%# -%# .# / (((           $%# &,  8 66 !6"  ,  ##    %% $  %$ ? $#% ,# # $ /     , %##$  !))* !!"   % $ .+$# %%@% % 5%  - #  $$  $##$ /+ $#%# # . 58

                

          

   

               !    "#      !        $  %    &      '    !   !  (    !  ) *%  % &  &              &  !    %  %          % %    %  ) "#   %     & %   %        +  !        '  ! % ,  &         ) *% "#   %       ! %   %!%  "#   % %      %       &  & %        ) "  %   & %    % %!%             %    %   & ) "    % %  & -    .    &  !   /         .    &  !   %!%          & %  % ) 0 %   %         !  

    & ) *%   % %  !  

 % & -   & /         +  % ! & %!%     )

 

                                                          ! "    #$             %    "  

       #      "  #$   #             !     &   !  !     #    "                $  !# '    !        &   #   #  '            '  #     '      ! $                  (     !  & 



     

                                                                          

                   

                                                                                                                  !"# $            %                                     & '(  $)(                       *                                                 

    (                                           '(  $)(                +$)(,       +'(,          -     $)(                   $)(                                    !.#  !".# '   !"/#          $)( '              %          

   $)( !"0#  !"1# $               

     $)(                   2  '(                !.3# $  4         

                  $

                  '(                                             2       5       6     4                                                            '( $      

  6           '(   

         



                           V (z) Y D(z )

E(z )

+

U (z) R (z )

G(z )

+

+

Y (z)

-

         

  YD (z), R(z), U (z), G(z), V (z)  Y (z)                     

                                                                                                                    u(k) = u(k − p) + ϕe(k − p + γ)

!"

        ϕ        !   "  γ                                               #               $             !     "     $          %                         z p U (z) = F (z)[U (z) + z γ Φ(z)E(z)] !$"   & !"    ϕ  Φ(z)                   F (z)           &      '        (       #   (                           R(z) =

F (z)z γ Φ(z) U (z) = p E(z) z − F (z)

!)"

                        



     

[1 + G(z)R(z)]E(z) = YD (z) − V (z) {z − F (z)[1 − z γ Φ(z)G(z)]}E(z) = [z p − F (z)][YD (z) − V (z)] p

           

F (z)



    

             

    

                                                  

             

  !      !       

         

z p − F (z)[1 − z γ Φ(z)G(z)] = 0        #

F (z)

"

        !   

    !          !          #  !        

                 !         

  $       

      "      !              

                     

F (z)

         

             %             &$                  '                      

   (       !        

u(k) = α1 u(k − p) + α2 u(k − 2p) + ϕ[α1 e(k − p + γ) + α2 e(k − 2p + γ)]  

          ! 

αi

)

*   

 +  !        %    

                 

              ,                +  

      

R(z) =

   -

U (z) F (z)z γ Φ(z)(α1 z p + α2 ) = 2p E(z) z − F (z)(α1 z p + α2 )

.

         

{z 2p − F (z)[1 − z γ Φ(z)G(z)](α1 z p + α2 )}E(z) = [z 2p − F (z)(α1 z p + α2 )][YD (z) − V (z)]

/

         



         F (z)                                                  

                                              z − F (z)[1 − z Φ(z)G(z)](α z + α ) = 0             !  2p

γ

1

p

2

     

"        #            !                       $  %  &  ' ( u(k) = α1 u(k − p) + α2 u(k − 2p) + · · · + αN u(k − N p)

$)

+ ϕ[α1 e(k − p + γ) + α2 e(k − 2p + γ) + · · · + αN e(k − N p + γ)]

R(z) =

F (z)z γ Φ(z)[α1 z (N −1)p + α2 z (N −2)p + · · · + αN ] U (z) = Np E(z) z − F (z)[α1 z (N −1)p + α2 z (N −2)p + · · · + αN ]

$$

{z N p − F (z)[1 − z γ Φ(z)G(z)][α1 z (N −1)p + α2 z (N −2)p + · · · + αN ]}E(z) = {z N p − F (z)[α1 z (N −1)p + α2 z (N −2)p + · · · + αN ]}[YD (z) − V (z)]

$*

z N p − F (z)[1 − z γ Φ(z)G(z)][α1 z (N −1)p + α2 z (N −2)p + · · · + αN ] = 0



%$              

+    #        ,                 -*).  /,   &  0       F (z)                        z E(z) = [1 − z Φ(z)G(z)]E(z) 0                               1                   2                             E (z)       p

γ

h



     

z p Eh (z) = F (z)[1 − z γ Φ(z)G(z)]Eh (z)       



M (z) ≡ F (z)[1 − z γ Φ(z)G(z)]

   

               

zp

   

          







M (eiωT ) = F (eiωT )[1 − (eiωT )γ Φ(eiωT )G(eiωT )] < 1  

  

ω

   

Ì



          



         



Eh (z)

   

  

                   

M (eiωT )

 

                               !         " 



Eh (z)  

               

              

      

                          #                     #                   $        " 

                 

                            $     !    %&       

Æ   %&   

'

z N p Eh (z) = M (z)[α1 z (N −1)p + α2 z (N −2)p + · · · + αN ]Eh (z) 

(

M (z)[α1 z (N −1)p + α2 z (N −2)p + · · · + αN ]   $      

  

       



Æ

       

   ) $                              

Æ

    

       *           

      *           

    +

Þ









α1 z (N −1)p + α2 z (N −2)p + · · · + αN

≤ α1 |z|(N −1)p + α2 |z|(N −2)p + · · · + αN





α1 (eiωT )(N −1)p + α2 (eiωT )(N −2)p + · · · + αN

≤ α1 + α2 + · · · + αN = 1

,

-         $                 

                    



   

Eh (z)

   

Æ      

Æ

   

         



                         

                                                              R(z)G(z) = −1    Ô       

                      !"#      $        %                                      

                  &  '      

 &  F (z)      

        &      (        ) *  +,-  z p    P (z) ≡ 1 − z −p F (z)[1 − z γ Φ(z)G(z)] = 0 +./       

         

             0          Þ          1 

         &            2     &                 3          F (z), Φ(z)  G(z)                    P (z)    

      4 G(z)                               &          Ô         0            &  0      &               

  2  P (z) = P (−1) +       -                P (z)  Þ                                  

             4     

                     P (z)  +.-  P (z) = 1 − P ∗ (z) +5P ∗ (z) = z −p M (z)

 

∗ iωT iωT −p





P (e ) = e M (eiωT ) = M (eiωT )

+!"      +,-   &     P (z)  Þ         '    



     

                 

                                            !  z N p   P (z) = 1 − M (z)(α1 z −p + α2 z −2p + · · · + αN z −N p ) = 0

"

 P (z)  ∗

P ∗ (z) = M (z)(α1 z −p + α2 z −2p + · · · + αN z −N p )

""

#      



|P ∗ (z)| = |M (z)| α1 z −p + α2 z −2p + · · · + αN z −N p

≤ |M (z)| (α1 |z|−p + α2 |z|−2p + · · · + αN |z|−N p ) = |M (z)|

"!

   $    %    $      P ∗ (eiωT )       &    &  $     P (z)       '  $                $ %                                $           ( )"*       %                   $  $       (                          $      +   %                                              $  ,$             --- .$    --- /      M (z)  %   &    ∆ω   ∆ωT  -   $     %  0   & 

     &     P ∗ (z)  1                       ∆ωT p 2   !3                   &      #         $  P ∗ (z)        $     z −N p        ∆ωT N p$                '            $           %              #

  $    %                       

  4               &   2            5

         



                             

       

   

  

    

   

   

               

     



             

           

      

                                                     

      

  

       !"               #   

 $%& '  !( )  * +  ' , -  !  .  ./0         '  " 

   1 %%2

  3445

   

               1 %59  %4:

$3& - 6  ,  +70 ,  8      "      %%3 %;<;

$5& = .= ,  '  /  ,0  !     '  "

     

!

    "       <<;5 %;;5

 >     !  7  

$2& = .= (  =(  ' ,0   "      '  "  >   "  " ?      # $        1 9  233%233: %;;:

$:& "  * = .=  ' ,0 " 

       @ 

  , 8      '  "   A   B   / >  %;;C

   %       

$9& "  ".0  A       '  "   /  1  >      #            1 5  54:9549% %;;9

$C& "  ".0  A   '"   "  / 1  > 

       $     1 25 / : %;;<

$<& +   .@  6  7-0     '  "  >  -  3A >     1 5< %;;5

       $    

$;& '  *.  'D A)0 )    !        '  "      %    

       1 5  %;;4%;;: %;;5

$%4& 8 A,  /  !   @0     '  "  E  8   !      " $    $   1 : / 5  23:25< %;;:



     

               !                  "" #$$%#$# &''#(

) * +     ,  -.   + / -! %        "

!

       *! ) "" 01%02$ &)$$)(

   

0 +3 4 5     ,   4 6   78 - ! /   

         

!

*! $# "" '0% &)$$$( 1 4 6  

3 9   4

 /  3%

      

  7" 

    :! " &)$$)(

# !/ 4  ;   < " / 3  %   !            :! " &)$$)(

2 !%=  =   +      3    ""! 

3

  

 !%

    

       :! " &)$$)( > ?@ 

4 

 







+



! 3    ! 3 =!

          





:! "

&)$$)( A B C %B  = 9   3 < " !  



           :! " &)$$)( " ! /  

! ""3

' +3 4 5     ,  3%   ! < +! +!    -!

%

     

     :! " &)$$)(

)$    ,     +

!  "

! /

         *! >0  $

"" '0$%'#1 &)$$$( ) 3 =     ,    3 -. "

 " / 3 <! :%     "

!        !! "    !    ""

                     

                                                                ! "       #   $     "    $            $          $     !    "# %   $   $          #           $   "             & $    #       "   !            

   $     ' ( $        )            #          $  $   $        $  )   $$     ( *    +  ( ,         ' ( $   #

 

                

                                     

                          ! 

               !                         

           " •    #       

$  •    #                                                 

% 



  

                



  

 O n−1/2

   

                





       O n−2     

                                          



                

                                                ! "           

dx = w(t, x, β) dt x, w ∈ Rm , β ∈ Rp  $     

  x w = M (t, β)x + f (t).





#      

!      "           

%   

        &     '

          (                 

      !              )

yi = ϕT x(ti ) + εi , i = 1, 2, · · · , n, 

ϕ

 

"

εi 

*

 &    '       

!              

      !  

      )

     ) +     ,           

      

    !       ) # -   β          b    

x(t, β, b)



% .        ,    β       b      β  x(t, β, b) /     " 

F (β, b) =

n 

ri (ti , β, b)2 ,

0

i=1

ri = yi − ϕT x(ti , β, b).

1

!         "         B1 , B2               b !                    

 



B1 x(0) + B2 x(1) = b, dx = M (t, β)x + f (t). dt       B1 , B2                                     

 !     "  #       

     $          "                 $   "      

t = 0

t=1

          

%   #    

B1 = I, B2 = 0.

  "  

  !                   "   &

min b,β

n 

(yi − ϕT x(ti , β, b))2 .

'()

i=1

           

β, b

    # 

*   %  #    +    "     #   !  " &

 

d∆β dt = M ∆β + ∇β M x, B1 ∆β (0) + B2 ∆β (1) = 0, d∆b dt

= M ∆b , B1 ∆b (0) + B2 ∆b (1) = I,

 

∆β =

∂x ∂x , ∆b = . ∂β ∂b

   &        $   "             ,   '() -    # "       #    !    !    "  " # # .    $   "     #     

min β

n 

(yi − ϕT x(ti , β))2 ,

'/)

i=1

0    "   

xi+1 − Xi (ti+1 , ti )xi = vi , i = 1, 2, · · · , n − 1, Xi (t, ti )           #  " '+) #! 

 

vi (t)

'1)

   



  

dXi = M Xi , Xi (ti , ti ) = I, dt  ti+1 vi = Xi (ti+1 , u)f (u)du.

 

ti

 

                

                   

                           

n

!    "     #   

                             "          "    $ "            

m  

  

 ! 



      %    "    !    &                   %                  



B1 , B2  %                           

  

              '                   #                        #       

    

              

  

            !       (  )       

   "  '         &            

      *     #                 +      %  !     (  )              

            ""       ,     ""     

      "      &     %   

    -     ./0               &       

A0i xi+1 + Bi0 xi = c0i



     +

              "          1

0 A0i−1 0 c0i−1 Bi−1 0 Bi0 A0i c0i



 1 Bi/2 0 A1i/2 c1i/2 → . Vi1 −I Wi1 wi1

2

! 

       "    "     

xt = Vt x(0) + Wt x(1) + wt ,

3

 

  



Gk1 x(0) + Gk2 x(1) = ck1 .

     

n = 2k 



           

                                                            

         

                !   

 

B1 , B2

   

B1 B2 Gk1 Gk2

  " #             



x(0), x(1)

     

 $           

Gk1 , Gk2

  %            &'(                      )         *              )      *      

    

     +

min β

n  2  yt − ϕT (Vt x(0) + Wt x(1) + wt )



t=ti ,i=1

,      

Gk1 x(0) + Gk2 x(1) = ck1 .

-

    .             /        $0  

m

      

1      

          +



2               *   +

V (0) = I, V (1) = 0, W (0) = 0, W (1) = I, w(0) = 0, w(1) = 0. •

3

Vt , Wt , wt  G1 , G2 , c      $         )

  . Ct           ,   4  *               +

Ct ←

 R1 (t) 0 Ct R21 (t) R2 (t)

5

              6 7      

R2−1 R21 .

7      

R1 





  

               −1 k  k −1 k G1 = X(1, 0), Gk2 c1 = v1 . G2

                    

  

 I X(ti+1 , ti ) C=  . I −X(t , t ) i+1

i

 δ = ti+1 − ti                 ! 

     !  "   #   δ $          %                     &   ' d2 dt2

   V X −1 = 0, ⇒ V = X(t, 0)(1 − t), W = X(t, 1)t. W

(       " )*          V W

R2−1 R21 = S1 = δS + O(δ 2 ).

    C ← RC   

  d2 V dV dM 2 + M + 2 (S − M ) − 2SM − V = 0. dt2 dt dt

)

                    # +#     #           "           (         C T RT RC = I

  "   #   δ  S=

M + MT 2

))

        )           

d + MT dt



d −M dt



V =0 W

      )            #  Y    V, W 





 d Y Y M I =N , N= . Z −(2S − M ) dt Z

),

 



                         



  d w w f =N + . z 0 dt z           x         2m × 2m     V  W  w

                                            dx − Mx − f, dt    dV dW dw = − M V x(t1 ) + − M W x(tn ) + − Mw − f, dt dt dt = ZV (t)x(t1 ) + ZW (t)x(tn ) + z(t).

0=

! "           t              

       ZV , ZW , z                t = t2        t = t1       Z(t2 , t1 )  Z             dZ = − (2S − M ) Z. dt

     

#    $    %

&'                                          (     &        $                         )   *   + ,   -./     0 (  -!/          %

&'           1  

m

         1 •   1 yt ∈ R , t ∈ T  •      1 f (yt , η(x, t)) •    1 η(x, t) : Rp × T → Rq                    x       0         $  xT = arg min KT (x), !2  KT (x) = − Lt , !. t∈T

Lt = log f (yt , η(x, t)).

!3



  

         

         •                 • n = |T |  m = dim x  •                        J = ∇2 K(x), h = −J

−1

T

(x)∇K(x) ,

x → x + h.

   !

  " #              xˆ , ∇K(ˆx) = 0    J (ˆ x)       #                 " $              %    &         ∇2 K(x) #                     '                 ()              *       ∇2 K(x)           +        

    1  2 E ∇ K(x) , n 1 h = −I(x)−1 ∇K(x)T , n x → x + h. I=

 "    

# ,-                  xˆn           x∗                            •                 •             E{∇2 K(x)} = E{∇K(x)T ∇K(x)}

 .

   I   

    +       

 &   # ,-      limn→∞ In  

  /     0                In      +             

 



   I                           1 1 E{∇2 Kn } = E{∇LTi ∇Li } n n i  1 1  ∇LTi ∇Li − E{∇LTi ∇Li } + = − ∇LTi ∇Li n i n i 1 → ∇LTi ∇Li , n → ∞. n i

 In       ∇Kn h < (=)0                      Kn   In       Kn                        ∇Kh 1 ! ∇Kh < −  I " #              K $                  n     

                           %                         &    xi+1 = F(xi );

1 F(x) = x − In (x)−1 ∇Kn (x)T n

' xˆ n              $(∇F(ˆ xn )) < 1

 ∇Kn (ˆxn ) = 0     1 ∇F(ˆ xn ) = I − In (ˆ xn )−1 ∇2 Kn (ˆ xn ) n   1 2 −1 (In (ˆ = (In (ˆ xn )) xn ) − ∇ Kn (ˆ xn )) n = ∇F(x∗ ) + O(ˆ xn − x∗ ), , n → ∞

( ∇F(x∗ ) = o(1), n → ∞   x∗                    ⇒ $(∇F(ˆ xn )) → 0, n → ∞

                )*          +           &  



  

                   min Kn ; Cx = d, C : Rp → Rm , x

 (C) = m.



              ∇Kn = λT C



  λ       !    "       n → ∞               1 1 {∇Kn − E{∇Kn }} + E{∇Kn } = (λ/n)T C n n

           

1



E{∇L(y, x, t)}dω(t), 0

  ω           #       $    "           −

1

E{∇L(y, x, t)}dω(t) = λ∗T C

0

Cx = d

 %

  λ∗ = limn→∞ λ/n"      x = x∗ , λ∗ = 0.

      &' &            !$          # " (  )       

        *) *  # " + ,     ,  ,                "         $     " -

                                 #  )      " !       min K(x); c(x) = 0. x

.     !  l(x, λ) = K(x) + λT c(x).

! Bk   '   ∇2x l(xk , λk )      

 



1 min∇K(xk )d + dT Bk d, S = {d; c(xk ) + A(xk )d = 0} d∈S 2                              

xk+1 := xk + γdk .                         !           "            

λ

 

T λk+1 = −A+ k (∇Kk + Bk dk ))

 # $   % 

Bk

 "      

       &          )

%n

∂ 2 ri i=1 ri ∂xj ∂xk '     (     

       

%n−1 i=1

2

ci λTi ∂x∂j ∂x  k

$   %      # $    %   *    +        " 

λi → 0'

"    

,             "         " "         '                -   ,            &

dλ = −∇x w(t, x, β)T λdt + σϕdω. *    "      (         

 .       "        "    "        (% (  "                      "      %    /!     # $       " ,    0  1!      "   $             % 

 # $     . "  

⎤ 1 − β1 cos(β2 t) 0 1 + β1 sin(β2 t) ⎦ 0 β1 0 M (t, β) = ⎣ 1 + β1 sin(β2 t) 0 1 + β1 cos(β2 t) ⎡ ⎤ −1 + 19(cos(2t) − sin(2t)) ⎦ −18 f (t) = et ⎣ 1 − 19(cos(2t) + sin(2t)) ⎡

x(t) = et e         

x(t) + σrnd   rnd         σ = 5., 1., .01             234      [19, 2]            

 .    

" '          "        "   "              

σ



  

         

  

5

2 + 1   27 + 1   210 + 1  

    

 



  

                         

                    

        

                                            !     

  "           

             

 #           

$                 %  

  

η

τ

 &

 n  (yi − η(ti ))2 + τ

min      

η(t)

1 0

i=1



dk η dtk

2 dt.

'(

               

    "              )  *(+&

η(t) = E {y(t)|y1 , y2 , · · · , yn , λ} , √ dω dk η = σ λ . dtk dt  



λ = 1/τ  %      λ      

  

 

,-

η(t) → E{y(t)}, n →

.         

         #        

min η

"

τ

n 

 (yi − η(ti )) + τ 2

1

2

(Mk η) dt.

,/

0

i=1

η         Mk  %

                  

         

    

Mk

        "            )  "   0  */-+ *//+  1 %   

Mk

        

dx = Mk x dt                 ,-   

b = ek 

 

η(t) = E {x1 (t)|y1 , y2 , · · · , yn , λ} , √ dx = Mk xdt + σ λbdω.



                

ϕT x(ti )

yi = M (t, β)      b

             



       

         

X(t, ξ)

  !   

      "! 

      #       

√ xi+1 = X(ti+1 , ti )xi + σ λui ,  ti+1 ui = X(ti+1 , s)bdω(s),

 

ti

∼ N (0, σ 2 R(ti+1 , ti )),  ti+1 R(ti+1 , ti ) = λ X(ti+1 , s)bbT X(ti+1 , s)T ds.

$ %

ti

    &     !   #!     #  '



x(t|n)

!  ( )   #      ) 

  &  !  

xi|i = E {x(ti )|y1 , y2 , · · · , yi , λ}



σ 2 Si|i 

 

'

#       #        #    

   *

ti ≤ t ≤ ti+1

 

  x( t|n) = X(t, ti )xi|i + A(t, ti ) xi+1|n − xi+1|i ,   −1 A(t, ti ) = X(t, ti )Si|i Xi + Γ (t, ti ) Si+1|i ,

Γ (t, ti ) = R(t, ti )X(ti+1 , t)T . &        

+ , -

x1|0  # .       x1|0 = 0, S1|0 ↑ ∞ 0  #  

    !  /! # 

      #!    #   )     ! #       # !     #   1&        

   #  2 !    &   3          "!   *          4! #   5 

  &  #           /! # 

  min rT1 V −1 r1 + rT2 R−1 r2 , x ⎤ ⎡ T ϕ1 ⎥ ⎢ ϕT2 ⎥ ⎢ ⎥ ⎢ · · · · · · ⎥



 ⎢ T ⎥ ⎢ y r1 ϕ n ⎥ ⎢ x− , =⎢ ⎥ 0 r2 −X I 1 ⎥ ⎢ ⎥ ⎢ −X2 I ⎥ ⎢ ⎦ ⎣ ··· ··· Xn−1 I

$6

$



  

 V = σ2 I  R = σ2 {R1, R2 , · · · , Rn−1 } Ri = R(ti+1 , ti )       R                       ϕ, b      

              x(t|n)            

           

  dx(t|n) = M x(t|n) + bbT X(ti+1 , t)T v, dt −1 v = Si+1|i (xi+1|n − xi+1|i ).



              

             

       ti !           bbT X(ti+1 , t)T !        

 X(ti, t)" dj X(ti , t) = X(ti , t)Pj (M ), dtj dPj−1 − M Pj−1 , j = 1, 2, · · · . P0 = I, Pj = dt

$

 

#

 ti  %&#'

dj x(t|n) dtj

( )  

       Pj−1 (M )T ϕ       j < k *  +    

         ϕT Pj−1 (M )b = 0, j = 1, 2, · · · .

ϕ = e1 , b = ek ,



0

⎢ ⎢ M =⎢ ⎢ ⎣

1 0

−mk −mk−1



⎥ 1 ⎥ ⎥ ··· ··· ⎥ 0 1 ⎦ · · · · · · −m1

! 

               R(ti+1 , ti)        ,          R(ti+1 , ti )  +    δ    !   +   

R(t + δ, t) = t

t+δ

 (s − (t + δ))i+j i,j

i!j!

Pi (M )bbT Pj (M )T ds

  -           δ → 0 & )   R(ti+1 , ti)" πk = λδbT b + O(δ 2 ).

!     → b



 



      R(ti+1 , ti )        bT Pj−1 (M )T ϕ = 0, j = 1, 2, · · · , k − 1,

                 → ϕ           π1 =

(bT Pk−1 (M )T ϕ)2 δ 2k−1 λ + O(δ 2k ). ((k − 1)!)2 ϕT ϕ 2k − 1

                                    !"# $%&'(    )  *

  +,# $%-'($%%'      .*

/    *  0            

  ζi = yi −ϕT xi|i−1   0   (

      σ 2 Vi  Vi = (1+ϕT Si|i−1 ϕ)      1   ζ2 log σ 2 + log Vi + 2i . σ Vi i + 1    σ 2    N ≤ n                  # σ ˆ2 =

1  ζi2 . N i Vi

   *       *

     ζ 2 i GM L = log Vi + N log . Vi i i             2     2 %n  T /n i=1 yi − ϕ xi|n GCV = , 2 {{I − T }/n}  T    3   )     yi       ϕT xi|n  4            λ 5                      O(n2 )     ( +,         O(n)  



$%' 4( 6( +2( (  (  7      8  "  5    9  :;  <   4+( 5 %==&#



  

 

     



   



!"#$ % &'  ( )  *

+) + )+  ,-  .

   ,     /  ).)  0   1 2   

 

%!$"%#3

4  20)  + 0     / .

 !

) 5+ 6 2,  7,,) 

!"#$

3 8 )   9,.+ ,  ): . ) )  0   7 6 ;+  7)



#

%!% " %#%

$ * < =   1  0 >/  ) 15+ =>   )   )    7+) ;) ? 0 @@@ !   A  7;<7 6 # *) ; ) 6 =)  &

 @@@

)  ) .) 5+)0   ,- ,

#

7 6

$# " !@$

 2  = 9 B ;+  

"3

  ,)    

 !

 0  A ,) + %!!"4@%

@ 9 :  9 7) 0 2  & ) C ,,  )      ,) 

6 7   7



#%

#"#  7) 0 2  D 

1 E)     

,  ) A ,)  )0 , E  )  & 7)  

 #3

#$"%$

   = &

 )    )  

,)  6 7+)   (

 ##

%"%4

%   = &        )   ,) )+) 6 7+)   (

 ##

4%"3$

4 = 2 2 +  7 *  5+      )  0 0  + )  7)

 !!

7 6 ;+ 

#@"%

3 9 B 7 ,  B2F  B *     ,       )  ,)  ,)  7  #3

%!#"4@



                 1  

  2 1                    !" ##   $     

     2     %  &   '   ( ) !*) #+ &   $    



   

 '            ,      

   -   -     %     

  .        %       , /   - '012 '  

      .  '0, 3  4            , 5   %     . 4         

     ' , 5        -  -.  -  

        -  .    , 3  4  '         6& 03'   6  $0      .    -    

   -   7          -     , 2        -         . 4  

     

   8   7      - ., 5            .- 4      -  

       . . 4    , 3    -  .   

       -       4      ,   2 ' '0 -     

  5   '0

   

 

                                                    !"            #        $ %          &'( )* +                         #     ,   #( ( #    %

            +



      

                                                       !         "                         "#                $           #    # "        % "     

  &   '                (              "   !            #                      )        *        )" *      )+(*   ,  -                   #   "  (   .     "        )  *             #                     -                      / 0  (   "    1              #                      (        2 "   "     #        3                         (  $   #       "       &          4   -   5    "                 ( 6     "   (  7

                                          )         "    *                    8  9#                            9              #          %               )*                  &#  " : "           3        %                  -      

             



                     

& &  & 

,

                     !        "   #        !        $                                      %   '  ()   #                                                                            #   !    $           

  •              • *         +             +         *         +         !         #   *    )#           -    +                  +       *      !    +                          #                            #                 +   • '            )                            .              /                /& • .*    /                 !                                             # 0*         +      0*                  +    1     





      

                                      

               !                                 "      #$              %                    &'( ')* +     % #         &' ( , '' ', '- ./*  !  #        

         &.'*   &.*   01      2 "     3                     

  1            #                                           • 4    #$            5  

     6                 • #  #$          # 

   

         • %       #$7% #                                   • 4                  • 8#9        8#9   #     

    8#9                   • 4                      % #              :  

                    5           5   

  %                            •       !                                     •                 % #   •               1                       2       

             



         

       

                                                                                            

                              !"#   $#%



       !             "  #!$

 

        #!$   %                         !   !  

 #!$ %    #  &          ! '    ( ! )*#!$ +,                          -  

       

                                .       -    

             /              #!$ '  !

 #  &,                                       #!$    0       ."# &1 #  &                #!$ !#        234     ¿

3

           &  '        (             (  (    )( "$* +,- . "∗"# +,-/     " +,- 0 12       "# +,-     



     

                        !"   #"$              

          

                        %$   #"$      !    !   "     !! # ! # #    !  #  "   $    %&'  #!     (   !  # !  )  #! 

             



                          !  "#   $%                     

    

    

          !      

        "  #$   " "     "      

  

      

      "   " "                

  

   "



         % &   '  

  !       ("                   

   )     "

        )    

   "

   "        "     

  

  $          (

    )   "      "                             "

    *      

           

  

        

  "  "      +% &   "

 +     

         

, )    -  % " .   +   % "*  /0% '.+   1!   .'  6 

    2345 6  7 "*

'48999   +   6:4' '  7 "*  ,

'   ;  /04'% &'<*  '7 $   ;999 !99 6



 

=1 % &  /<'<>< 4  %  /<' &'<*  '7 $   ;899 +99 6

 '7 *  '&/   +899    '   : )   4?6

< 7 "*  60: %'  "  1 7, >      )    1=+  < 2 < ! 76 %  ?4 &   "  6  



      

           

                                                     

    

              !                  "         #        !$            

    $ $ %&' ()*  + $ ,!       $          



   $ $ ,- .  / (!              0     $ 1 "     /        2         $$ 2×2* 3 2* '4!         2*56$,- 3 78 '4       

      9 '4       9 '4

 --$: .!    2,     

       956$--: 3 9$7 '4     $                            (       

      $           

         

              ;                  $  

                           $         

; 

 #             

  $ 4 0  ; 

 #           

     #     

    

    

                 $        ;        ; +<4(=                     $        

          ;  5  

 #        $ 4      "      >$ ?2*@ + $ 7                   0"   # '                           <,   # 

      #           

       $         ; 

 #            

         

             



   

                         

   

   

     

    

!   "    #$%&   

   !             !    

                      '   ! ( )        

    ! (     *    

                !              +     *            , •  





       

    +

 -

             !  +

      +  !      

12000 Problem size fits into aggregate L2 cache 2

10000

Dmat=128 * 128

2

Dmat=128 * 512

MFlop/s

8000 6000 4000 2

pure MPI:D mat=128 * 128 2

masteronly:Dmat=128 * 128

2000

2

pure MPI:D mat=128 * 512 2

0 0

masteronly:Dmat=128 * 512

32

64

96

128 CPUs

160

192

224

256

                           !"    #$%& ' ()         ) *  )  ) 

  +, )      )  )   ) '

 



      

                 !"   # $% &    '%  $  %  (  )   *+

     $,,% $   ,  -  ,  %     ,,     # $% &    '%  $  %  (     *+

          . $  /// # $% &    '%  $  %  (     *+

             



  

            !  "    #  !    $  %&   &'

  

         ( )     *  +  !  "    #  !    $  %   &'

  

         (       *,  !"    (  ,  !  "    #  !    $  %-   &'



                        



                                 

     

! "   

# $    %&

 '(     $  ! &           "       $  ' %

     

)



  *     

        +     , ,                            

  

    -                  .  '                  

 ! /    

 "             

 . 

   %                    0                

    1  $2 0333  ! 0                          4    ! 56%% 7         $8&                        



8$ ! %3  %%          8%   

%&  9  $    - $ +        , 9  $    - $$ +       , : $        $            $    +;$,      +  ,     <  +;

   ,

: $$        $   %&

 +;$$,       $$                     

     %& #   $               $                                      )              

      :   < +        $  =,                                       4        >  

$         ?     4   

                  4 4

                       !        

             



                            

 

                                  

   

      !                         

          

        "          

 

        # $ %       & '          

      

                   

           ( $%                & '     

  

      

 ( $%         

        

         

        

      

  )         

     

   *+,-  

 &  .+   /     

  01& /.,              

           & '         

      "  #   01& /.,        & '                            &  .+   /     2 //  $3& '%           /            2 //  4                    &  

  56789 :       

     

    



    /  $  // %     ;    

    !        <             

             =    /   !        =             

   !               )        >         

          

            $?< %            $?< %                    

      

            $

     

          % 

                                                                

                            

                  



     

 

                                 !"  #           !  $  %& !' ( )*    !'

        ∗  

                                               !"# !"# $# !"# !"# !%&' # "%&' #  ()   * +,-    ../ ).0    1 2 3        ()  34,    )+4 ).0     1 2 3       56 (0    3+1   -1- ,40

  3 2 1   7    +.-89    56 (4" ,,-   .4) 4),

  , 2)0       9   9  1   : ;1/// /34  3+ $ 4/ .,8.,   1 2 1     

"  .8 /)0  ,1 $ ,/ )0   1 2)0     ! '.1// 0// :< /3,-89  ,4 $ )-.89 .,     )0 23   =, " 79

  ! '.1// 0// :< /)40  .+ $ /41/ .,     )0 23   =)0 " 79

  ! './// 3// :< /)/  .. $ /.+89 .,    )0 23   =  9    4 5 % 01// /)4   )1 $ )01   3 2,3   =  9   :6& >  /),-89    /)1089   

., 2 ,         :6& >    //+)   /)+,    ., 2 ,        

:6& >  /))189   /)/389    ),1 2 ,         :6& >    //1,   /)/)    ),1 2 ,         :6& >    //--   //3   ,.+ 2 ,          0 ) , . 3 4 0 1               





  

                                                           

   

       ! "#   $ %%          

 %       &'()* +  ,   

       

-    

   %%     

%        .      - 

   

           -      

   

                 %  



               



%  /0

5 6

                      !"  + %       + ,    + % -  + . - & /0       + & /1 0     23".44 

    5% 6  + 7    + %  - &

             





                                            !      

 "# !$          %&'    '     (     !       (                            )     )  (            )      %         *    (            !   %     %                                            + ,           %                        %  

 -              ( (    ,                    

   )  )  

      (         .      

)          (           ,     (            %           

                    

    

             /                          012 3

(  4  (   5( 3 6)  ) (  3 -

  %10( 

1 ( 1 '(   7  038( 2  -   "#( 0 9    7%( 7  :   "33(  2     "#0        .                       240  ( 40;  ( 012 3

( ,)   2 (  % ( "#( 7%( "33<3#(       "   # 0        (        '=        ,     #          6'"1%20 /  



     



               

 

 

       !"## $%& ' 

 ( !!"

           # %  ) *    +    ,

     

1 #///

       

   -  .// +0



       

"    - 

           

 

         *  ##67 -  !!7  89!69#9

2    3  40)  +00   &  ( -)5 



       

: - 

;,

0

"  #  

<))3  

- 

$3)

!

 *  0   = + >   ? 22

    #//" -  00  ;     *  7   ; 0

"$      %  

  



 0   -       )0  @  @ #///



        

  # 

 

    #                -  .//

8 + - ; (

+0 1 #///



            !" 

"$          &  '  ( '    & &    @&#//#A  )0  @  & 0

9 0 ; 00 ,   0 0 '     '

  0 &    -   *  B > 0(  &0) % , )0 & :68 #//#



        

           $          

!    $ (0   ? $ 

+0 ,  *  29CDA 86!: !!9



   ∼    

    # 

!        #           

  



/  + 4 -  0     + 0

 0 -* #// > #// + > B-&

     # 

'    ) "$        &  

  

 0   -       )0  @ 

   

@ #///



        

#  00 00     % 

 

    !!:

 )  

  

  

 

             

     

     

    

  

     

  

  ! "   "

%

      & ' 

 

 



  # $

      



 

( )*  +*

                  !"#    

, - -.     & +& / 



       

 

  0*  1**   

    2  3  455 ** 6,4

 - -.   

   

!"#           # 

 *&    (  0#+ 0   455 0$

. )  # 7 

 

  

1  46, 455

 

  

  89  8   & :  ' !

$                

 *&  

  * /!*  )*  ;/) <= > & *  ** 46  1

?& 

     

  > ' +  & / @? *

  &'    

    %

 *  

%  0  

   *  &       ;  <=   ** ,65, 45 /  

 % "

  / ?   & @  ' 

  (   "

 '  * 3 7555( 0      

0*  

   0*  '  0  1&     7 4 > 





 &

  

 !

   

A

$ %        )

 *&   /!*  )*  1** $

    & ' ;/) 1' 4555=

 "   4555

    

 44 +& /  +  1  A   &  !

*    %          * )   



*&   20 1-<4554 (  < 0        0*   & 0*    4554 *  ** (65

   

         4,647

       

     

                         

                         

                                                                   !                         "#$% &$   % $                      ' (           (          '                          

)               !     

    #          (                  % $ "#$% %*#+ ""  %"$

                                            !                                       "                         #              $               %       &         &       '  (' )                             &   $                       *           



             

       

                                                              !"#                  $      %                          &   '()*+ !,#         '()*                                   '()*+              -* !.#                            +&* !"#    /)                0                                        1 +&*             2        0                                     /                          3                                      0          )

                          0    !"# 4                      5                                  )                                 %    

       4         %   

                                5         

                                4         6% 6   + *  66 +*            %                4               66 +*   +  7    %   

       +  8                  66 +*       . +          , &  +  9                66 +* % 

     



              

               

                                              

                   

                  

                                !" #$% &' #(%  )!!*  !"                         )!!*                     &'              + &'       ,-"           *     *                     .  /                         0      1                                  !"                         '      !"                            *                      0        *      2      &&                     && " + &&       2                   3    *           ,"   4"                                   -     &&  &&   &&                                              &&      &&                

                                 &&                     



             

                                 

                                                                                      

  !                             "           "             "                                           #                      $    $               %                         "                 # 

      &                  '       ( )            !*               +   +   $          

          +   $              +  $              %        !*     !*,               -

     !                    .       .        //  '   !  //                                         

     



                                          

                                        !                            "         # $

     

 

                          

 %   %  &         "         &         #  "     

                                   "              &              '    

        

  "         &               

  

                      "           &  '                                            



             

                          

                                           !"# $%&                    ''(        ''(               "     ) *  ''(                       ''(                                        )    (         ''(                              '+ )   ,- )                                        ,            ''(  (           *                       !"#             '                    *  ''(           !"#       (     (        ''(         (        *   . "                /,#  (                             0 (     0     

            (    0              (                   *   .  *    0 % 1             2 3                      .                                   *    --  4                                                                  /,#               5 6                    *     

     



         

                                                                               !"   !  #                            #  "                        #                 # $   %                

         #          &              '# (            )       )*           ) +#            #        &            #  %               ),*              # $    &       )*  #



            

  

            

             



! "

   #     $%       $   

  $   &     '    

        

                    (              )          *   +  ,  $  -$    +

 $      * %                   '    &   '       $            .           $  





   

   

     



                                                           

  !   "    "    #      $     %                $ #&                    

    '           $                  "   (                      #        $                          (                                                         '                   '          )                  )   (    )                 * +  ,   -*+,.  *    -*!. /     0   *+,      *                  1           

   (                 )                         $                                    )           (   0    $                      "    #                         2              #            2  



             

                                                                                     !               !            "   #                          $%              

   !      & '   () *   $%                $%                  #            

      +               !           , -       

           !         '                          & ' *                        , .   , /    0    1 $% "   2             1 3   2  #   4                 

     2               2              # #     



   

 ! " #$ %&" '() *   *  %+*   *   %+*    *

           2            5             2             ,    # .   !"                               2            -        !     

         !     !      

     



                                              

                                                                !   "#       $              % !

    "#    &      '              

                              & () %                   *         + &    , & & 

       !   &*             &                      &  - .              ! 

 

        &     

     &   &              

 !   "#      



                       

 



   

                



          

                   

!"#   $%&

          #'     

  ((

!#      (()   

    *   ((

!#   

 

            ((

 

!#   

                     (()   ((     ,   ((

!+# 

!#      )

!"#   

!#        (()     

                                 ((

!#

                              

 ((

!#    -  ./#

                 )         -   (()    ((

!#

                   '       (()    ,    ' ' 

                     -   (()   0    

  

 ((

!#    (()  

            ((

  

  

     , -   (()          

!#    -  (()       

  

      

               

            

 

 

         

                !        "    #             $ %&' (  "                                 $  $ !  $                  )        

   

 *                                          

                   

   + * ,   -.# ,    

         

 

 "   !

            (    

      "    !                #             

   

     "                       

                         

         ,      "     #*/ $    " !        $            0  !   $              !    0 1    

$         



            

                  



                                            

 

 

    

      !"#        

            

     

 !$# 

 % &'(    %   )% * 

$+ ),++$* !,# -   .      / 

  )/ $,* 0- 1  

 ),++,* !0# '  /    2    3   )3 $$* 0- 1   

 ),+++* !4# %   /   56    7( 3           8 

  -  

 '   &... -        - 

/ .    !9#        /( :    / 

      ),++,* !"# ; /  '   .   '.   < - (  - =       ),++0*

                 1      1     2     2 1

2

                               

           ! "#$    

     

     



       %         &'           ( )              !   %      %      (     !% '   %     * +                  %      !          '  (

 

                    !    "          #  $                  "" "     !  %   %       &         "       $  "         "  ""        '! #           " #  ($   "      #       % " &                     #    #  #    #     )*+ ,        ./0  #   !  $ %     #  "         /$ 1       "   "       "   $  2                           $   "   $   .0   ..304/0  



          

                

  

 

      !



        

    

  

 

     "

       #     $% 





  

      #       

     

#             

                  

     &       #  '     &             #     (

       )   # &  #            

    #      

   &      *+%,- ) 

 .#

'  

 

    

     

    /    #    +%,    0    

              #    0            #

             

   &     

             / 

     # 

          &

     &        ) 

        

'  +%,        

   

   

   

 &  #    

 +%,  

   0         0     

           0   

            

 

 

     



                    

                                  

                                !   "# "  "           $                                            "             !             $                         "   "   "   "                              

                           %      &"        '    $  (                    "                                        )*'#+',    -                                                !       .              "          "                  "      $                               /       0              

                          

"          )"''1, 0      

  /   2         "                                             3                  

                       

 

          

1st          nd   2          



               

            

0

1

2

3

4

5

6

    

 



7

8

9

10

   



      

!"   #         

  $                   %&!'"()

z = minx,yω cT x +

Ω 

πω qT ω yω

%*(

ω=1

Tω x + Wω yω ≤ hω , x ∈ X, yω ∈ Y, ω = 1 . . . Ω .

s.t.

1st   2nd     x   yω       Y   $   +   Ω          ω           πω  +                 Tω   Wω              hω        +   ,                           x   yω  ,         c   qω  +            + 

X

 

  $       

     

       

+      %*(        -     



  .  +                         !

            %      

    



   

 

Wω (

        

Tω 

   #

     

T1 W1

W1

T1

T?



T?

W?

W?

H

   

       

  

                                                z = minxω ,yω

Ω 

  πω cT xω + qT ω yω



ω=1

s.t.

Tω xω + Wω yω ≤ hω , xω=1 = . . . = xω=Ω , xω ∈ X, yω ∈ Y, ω = 1 . . . Ω .

    ! "                                 #                      # H    $             %       λ  %      z LD = maxλ minxω ,yω

Ω 

  T πω cT xω + qT ω y ω + λ Hω x ω

"

ω=1

s.t.

Tω xω + Wω yω ≤ hω , xω ∈ X, yω ∈ Y, ω = 1 . . . Ω .

 %            #      &&'(    "          !  # λ "   Ω        )       "    Ω *    xω                           +      ,"- &  . ' $ &  /          z ∗  ∞           P       &  .   ' P = ∅  z ∗    & " . 0 &  &         P ∈ P      %     ' P     z LD(P )  ∞ ' z LD (P )       z ∗   & 



          

               xR (P ) 

     x = xR   z ∗ (P )    z ∗    z ∗  z ∗ (P )    P  ∈ P   z ∗ (P  )   ! z ∗   "         x(k)  x  

    P  # P   

      x(k) ≤ .x(k) /  x(k) ≥ .x(k) /+1   x(k)        ω  $   %  x             &           '    1st      (%)

     *              + ,    %  !       -            , *                       ,        '                  

         *                %                    # .        (/) *   0     #  0 

πω

"%

lifp

αlifp ω Mlifp ω −

ω



1 

%

k  

irp

% ifp

+ α+ ifp ω Mifp ω −

βirp ω Nirp ω −

max Njrp ω ≤ Nikω

% ifp

− α− ifp ω Bifp ω



$

% ip

γipω wipω

"

∀ i ≤ k, ω ,

j=i p,rp



min k=I zkpω Cpω min  yk+1,pω Cpω



0 i=1 Cpω max  yipω Cpω %k % ≤ j=i rp Njrp ω ≤   0 max k=I zkpω Cpω Cpω i = 1 − max min   yk+1,pω Cpω yipω Cpω ∀ i ≤ k, p, ω ,



+

+

%k j=i

min zjpω Fpω

2

%k

max j=i zjpω Fpω

zi−1,pω ≥ yipω , zipω ≥ yipω , zi−1,pω + zipω − 1 ≤ yipω

∀ i ≥ 2, p, ω , 3

     





0 zpω  i = 1 − zi,pω ≤ 1 − zjpω ∀ i + 1 ≤ j ≤ i + Ipoff − 1 ≤ I, p, ω ,  zi−1,pω   0 zpω  i = 1 − + zi,pω ≤ zjpω ∀ i + 1 ≤ j ≤ i + Ipon − 1 ≤ I, p, ω ,  zi−1,pω   − soll Ml(i+l−1)fp ω = Bif − Bif ∀ i, fp , p, ω ,   pω pω l|i+l−1≤I

%i

%

j=1

= 

l

 Mljfp ω +

%i j=1

% rp

+ Mif pω

+

Mf0p ω 0 

ρ¯fp rp ω Njrp ω



i=1

 

∀ i, fp , p, ω ,

0  i = 1 zpω − zi,pω ≤ wipω ∀ i, p, ω , zi−1,pω   0 zpω  i = 1 − + zi,pω ≤ wipω ∀ i, p, ω , zi−1,pω 

Nifp ,ω=1 = Nifp ,ω=2 = . . . = Nifp ,ω=Ω

 

 

∀ i, fp , p | i ≤ 3 ,

 

+ − Nifp ,ω ∈ N; zi,p,ω ∈ {0; 1}; Mlifp ω , Mif , Bif , wipω , yipω ∈ R+ . pω pω    

              

       ! "         #       $  #!  

 

 #  #     #       % % &  '$

        (       

   %  !       #     #  ! )*  +$            ! ,  -. #$   

   #   #   %

      $ # #  

max Nikω



   &           ' &  $       soll Bif ! pω

 #      %%%  

 && $    $      '& $  !      %   (   

%!

   / .  !  #   %  ( 

   !

0($     *    # (   $ (  $ (    1%%   $ (       $ !   

  %  %   # #    

  %    %      # %  * 2     ! $  3       %     #      !



                            

                               

 

             !

  "                #$ %&'               (  ! "                          "                                 )  * "         #%&'                       +   ,&%-. /01                   $ %&    

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1

1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1 1

1

1

1

1

1 1

1

1

1 1

1

1 1

1 1 1

1 1 1 1

1 1 1

1 1 1 1

1 1 1

1 1 1 1

1 1 1

1 1

1 1

1 1

1 1

1 1

1 1

1

1

1

1

1

1

1 1 1

1 1

1 1

1 1

1 1

1 1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1 1

1

1 1 1 1

1 1

1

1

1 1

1 1 1

1 1

1

1

1

1

1 1

1 1

1 1 1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1 1 1 1

1 1 1 1

1 1 1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1 1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1 1

1 1

1

1

1

1

1

1 1

1 1

1

1

1

1 1 1 1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1 1 1

1 1 1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1 1 1

1

1 1

1

1

1

1 1 1

1 1

1

1

1

1

1 1

1

1

1 1 1

1 1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1 1

1 1

1 1 1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1 1 1 1

1 1 1 1

1 1 1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1 1

1

1

1 1 1 1

1

1

1 1

1

1 1

1 1 1

1

1

1

1

1

1

1

1 1

1

1

1 1

1 1

1 1 1

1

1 1

1

1

1

1 1

1

1

1 1

1

1 1

1

1

1

1

1 1 1

1 1 1

1 1

1 1 1

1 1 1

1 1

1

1

1

1

1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1

1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1

1 1

1

1 1 1

1 1

1 1

1 1

1 1 1

1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1 1

1

1

1

1

1 1 1

1

1

1 1 1

1 1

1 1

1

1 1

1

1 1

1

1 1

1 1

1

1

1

1 1

1

1 1

1

1 1

1

1 1

1

1

1

1

1

1 1

1

1

1 1

1

1 1

1

1 1

1 1 1 1

1 1

1 1

1

1 1 1

1 1

1 1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1 1

1

1

1

1 1

1

1

1 1

1

1

1

1 1

1

1

1 1 1

1

1 1

1 1

1

1 1

1

1

1

1

1

1

1

1

1 1 1 1

1

1

1

1

1

1

1

1

1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1 1

1 1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1 1 1

1

1 1

1

1

1

1

1

1

1

1

1 1 1 1

1

1

1

1

1

1

1

1 1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1 1 1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1 1 1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1 1 1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1 1

1 1

1

1 1

1 1

1 1

1 1

1

1 1

1

1

1

1

1 1

1 1

1

1

1

1

1

1

1

1 1 1 1

1

1

1

1

1

1 1 1

1 1 1

1 1 1

1

1

1 1

1 1 1

1 1

1 1

1 1

1 1

1

1

1 1

1

1

1

1

1 1

1 1

1 1

1

1 1

1 1

1 1

1

1 1

1 1

1

1 1

1

1 1

1

1 1

1 1

1 1

1

1

1

1 1

1

1 1

1 1

1 1

1

1 1

1

1 1

1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1

1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1

1 1

1

1

1 1

1 1

1 1

1 1

1 1

1 1

1

1

1

1 1

1 1

1 1

1

1 1

1

1 1

1 1

1

1 1

1

1

1

1

1

1 1

1

1

1 1

1 1

1

1

1 1

1

1 1

1

1

1

1

1 1

1

1

1 1

1 1

1

1 1

1 1

1

1

1

1 1

1

1 1

1 1

1

1 1

1 1

1

1 1

1

1

1

1 1

1

1 1

1

1

1 1

1 1

1

1

1

1 1

1 1

1

1

1 1

1

1

1 1

1

1 1

1

1

1 1

1

1 1

1 1

1

1 1

1 1

1 1 1 1

1 1

1 1 1

1 1 1

1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1

1 1

1 1

1 1

1 1 1

1 1 1

1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1

1

        "                                      "          23 2

4     ,&%-.   

56  07               8 !7 ,&2               

  97:               97: 8       7;     <          ! 777  7 777   

  !5:  !0:   =       

     



                                                                                                                                         !         "        !      #

       $%%&'     %() ( *  +,- .  /'0*1   2-                          3,4    0     %                        /'($          5           " #    6              7     2   $        28   -+                         2 2   9                          0                                       0    :             "     "9##     "     "9## &               $                            "          0   # ;              $              xR    1st     %                  < =/    1st                !  "L1 $ #          1st         "    πω    #>

 &                                      5    =  >    $             $           



   

     

                                       106                105                               

                        !"#$%"%&    '   

 () * + , % - . '% / 0 ' %  * 1 '   2     %                    % &3456"% 77$ (") /  8   9            .  %  :'% 77$ (&) ;; ; <  1 . =               

      % ">4&$6>!% 777 (>) ;09?        29-* 2 % @  A % ;+% "" (!) ; B 

                !  B    % C 8   D281  D1&>% E   D D  % 8  % " (3) . / B ' % . 9

% - 1 %  /  0 '                  F              % ">4&"&6&"5% " ($) / 0 '   * 1 '                 4       #    2  " #  " $       !     %    76 % @ % 775 ;+;B 0    (5) * .   .    @                        

        !   % "&    (7) * .   .    1'           2          % 5  .   0  .        % "&    ()  .  .            4           2  " #  " $       !      %    $!67% @ % 775 ;+;B 0    

                                        

     



       !"   #!  ! !  $% 

Pm 2 F (x)2 = 12 i=1 [Fi (x)]  ! '          (  H = G + S ! f #  G = (F  )T F   S = F ◦ F    T T !"   ) ARN = G + B #  B = Z2 Z2 SZ2 Z2     ! !   ! !    S !  ) im Z2   )  %  ! !   #! " G #  ) !% !  q    %    ! G' *! !  

 ! & 

f (x) =

1 2

!   !" !            %!  !     !

 ! !    ! !    '

 

!       ! !    &  !"  

#!  !  #!  !      ! !    

 

  

        f (x) :=

m 1 1 2 2 [Fi (x)] −→ Minn F (x) = x∈Ê 2 2 i=1



 F : Ên → Êm  m ≥ n  

 m  n                .           y = %mi=1 yi2                !    "  y = r(t, x), r : Êdim × Ên → Êdim #      t ∈ Êdim       y ∈ Êdim    x ∈ Ên        $    %  x         t

t

y

y



  

(tl , yl ) ≈ (tl , yl∗ ),

(l = 1, . . . , L)

    (tl , yl∗ )  yl∗ = r(tl , x∗ )           

 x∗      

                                  x∗                   f (x) :=

L 1 2 yl − r(tl , x) −→ Minn . x∈Ê 2



l=1

   m := L × dimy        !            F         ⎛ ⎞ y1 − r(t1 , x) ⎜ ⎟  F (x) := ⎝ ⎠.  yL − r(tL , x)

"            #    $   %    %&    '                  x  (         )      y˙ = Φ(t, y, x)

  t ∈ [ t0 , te ],

y(t0 ) = y0 (x)

*

   y = y(t, x)         t       +  x           Φ(t, y, x)       (              y0 (x)      

       )       r(t, x) := y(t, x)       ,       y = y(t, x)  *    t       +  x    dimt = 1 t0 ≤ t1 < · · · < ti < ti+1 < · · · < tL ≤ te   y : [ t0 , te ] × n → dimy , y0 :

Ê

n



Ê

Φ : [ t0 , te ] ×

Ê

dimy

Ê

Ê

,

dimy

×

Ên → Êdim . y

-  Φ  y0   .            y  .                x /                  0/1    +                     x+ = x + s,

s    f (x+ ) ≤ f (x)

.  

 x = xk         s = sk               x+ = xk+1     s              &         ϕ(s) := f + g T s + 12 sT As ≈ f (x + s)

2

           



 f  x = xk  f := f (x)         g := g(x) := ∇f (x) = F  (x)T F (x)        A = AT    H := H(x) := ∇2 f (x)        

H = H(x) = ∇2 f (x) = F  (x)T F  (x) + F (x) ◦ F  (x) =: G + S 



G := G(x) := F  (x)T F  (x), S := S(x) := F (x) ◦ F  (x) :=

m 

Fi (x) · ∇2 Fi (x)

i=1 

 

F (x)





F (x)

 



      

F



x

              !    "     



s





  

  !  # $

              %$&     

AGN := G

 &     

AN := G + S = H 

   '       &        

B ≈ S

            

G





   

G

   

  

 

  

ARN = G + B

  

 



q



 

    

    

  

       !   



     "         

(  )  

           

q = qk

 

     

λmax (G)   

 qk   qk = 0  

   $

                    (                 

qk > 0

             

      %$&       



             

 %$&  

             %$&    $  #           ! 

 

 

      

        

G

          )     

       

 

s





!    "* 

    



 



 

sfull

      

    !  (    

Min{ ϕ(s) : s ∈

Ên}

+



  

  A                        α > 0                    s   s := α · sfull      f               s                       Min{ ϕ(s) : s ∈

Ên, s ≤ ∆}



    s            ∆ > 0                  A    ! "#

%$ "&%                   ' 

    (   A H        )      (     

    (   AGN := G = (F  )T F              F          *   

    ϕGN (s) := f + g T s + 12 sT (F  )T F  s =

1 2

F + F  s

2

+

 F := F (x)  F  := F  (x) , -         Min{ 12 F + F  s : s ∈ 2

Ên}.

.

         sfull = sGN = −(F  )† F     / 0    sGN  , J †    1

 2       ( J  * F    3 n    G = (F  )T F         sGN = −G−1 g             . 4         sGN + ker F    sGN                   F           *   3          / 0                 F  = F  (xk )   3 n            cond(F ) = (cond(G))               F = F (xk )  5  6     7         / 0     x+ = x + sGN       8         %GN        xopt  f  rank(F  (xopt )) = n  %GN := %(G(xopt )−1 S(xopt )) = max h=0

|hT S(xopt )h| <1 hT G(xopt )h

#$

 %(M )         M  * #$     H(xopt )          xopt         ,    F  (xk )       σj (F  )      λj (G) = [σj (F  )]2   G      

            λj (G)



            

                  

F  (xk )

                        

G

        

F (xopt )

           

 

  



   

   

 

        

AN := H



 

  

ϕN (s) := f + g T s + 12 sTHs H

  "#

 %  

  

          

      $

!!

f

sfull = sN = −H −1 g           g(x) = ∇f (x) = 0    



% 

Hs = −g



  &'  

               

      

  ()*

xk



H

 " 

      

x∞

  



H

 #

  "               %  

S = F ◦ F   H = G + S         F                %   + 

 ($*

              % #     

f

 

 

H

    

f    H      S

,-./



   %       

 0  

  

  

    

 (1*

(*

    (2*

(!2*

(0*

(!)*    

"    . # 

S S       q   Z2 = [zn−q+1 , . . . , zn ]  G  

3            

          

im Z2

  

 

q

    

λ1 ≥ · · · ≥ λn−q ≥ λn−q+1 ≥ · · · ≥ λn ≥ 0 3 45 6 3 45 6 q p=n−q 

G

       /

!2



  

            

1

Λ1 0 ˆ := Z T GZ = [ Z1 | Z2 ]T G [ Z1 | Z2 ] = G 0 Λ2

2



 

 Z = [ Z1 | Z2 ]   

  

      

Λ1 = diag(λ1 , . . . , λn−q ) ∈ Rp×p Λ2 = diag(λn−q+1 , . . . , λn ) ∈ Rq×q

       

      

G

              1

Sˆ11 Sˆ := Z T SZ = [ Z1 | Z2 ]T S [ Z1 | Z2 ] = Sˆ21

Sˆ12 Sˆ22

2



      ˆ + S)Z ˆ T H = G + S = Z(G ˆ T     " !    " S = Z SZ 1

B := Z

2 0 Z T = Z2 Sˆ22 Z2T = Z2 Z2T SZ2 Z2T , 0 Sˆ22 0

#

   

 S

im Z2          !

 "$ 

1

ARN := G + B = Z

&  H − AGN 2F

2

0

Λ1

0 Λ2 + Sˆ22

? ?2 ? ? 2 = H − ARN F + ?Sˆ22 ?

ZT

%

 

F

H − ARN F < H − AGN F

 Sˆ22 = 0

'

  ARN     "

 H  AGN    (    !    '    )           . 2    " * 1 0.5 ˆ n = 2 q = 1 S = 0.5 −0.1   )    H − ARN 2 = 1.2071  H − AGN 2 = 1.1933    *      " B +   #    Min BF : uT Bv = uT Sv

 ∀u, v ∈ im Z2 .

)  B           S          im Z2    G      

           



       B = Z2Sˆ22 Z2T  ARN = G + B       T Sˆ22 = Sˆ22 = Z2T SZ2 = F (x)T F  (x)[Z2 , Z2 ] ∈ Rq×q

    Sˆ22  S   im Z2       q2   T (Sˆ22 )ij = zp+i Szp+j = F (x)T F  (x)[zp+i , zp+j ] (i, j = 1, . . . , q)

q(q − 1)/2

            

2 Dij := F  (x)[zp+i , zp+j ] =

∂ 2 F (x + αzp+i + βzp+j ) ∂α∂β α=β=0

             F                span{zp+i , zp+j }      q      n                Z2            !"        #         ! $%&  '()  *              + (q2 + 3q)/2   F     ⎧ 1 2 ⎪ ⎨ δ2 [F (x − δzp+i ) − 2F (x) + F (x + δzp+i )] + O(δ ) 2 1 Dij = δ2 [F (x + δzp+i + δzp+j ) − F (x + δzp+i ) ⎪ ⎩ −F (x + δzp+j ) + F (x)] + O(δ)

 i = j   i < j

       ,  , δ > 0       x = xk                            -            xopt  f . 

  H(xopt )     /  0      /    ARN 

     g(xopt ) = 0 G(xopt )            1      ARN (xopt ) = G(xopt ) + B(xopt )       

  2  .30 .40       h          {zi }  G  h = Zu  u = Z T h = [ uu12 ]        ˆ = uT1 Λ1 u1 + uT2 Λ2 u2 , hT Gh = uT Gu ˆ = uT1 Sˆ11 u1 + 2uT1 Sˆ12 u2 + uT2 Sˆ22 u2 , hT Sh = uT Su ˆ = uT Sˆ22 u2 . hT Bh = uT Bu 2

  .10   



  

|uT1 Sˆ11 u1 + 2uT1 Sˆ12 u2 + uT2 Sˆ22 u2 | = |hT Sh| ≤ %GN (hT Gh) = %GN (uT1 Λ1 u1 + uT2 Λ2 u2 )    

u1 = 0

∀ u1 , u2 .

  

|hT Bh| = |uT2 Sˆ22 u2 | ≤ %GN (uT2 Λ2 u2 ).   

hT ARN h = hT (G + B)h = uT1 Λ1 u1 + uT2 Λ2 u2 + uT2 Sˆ22 u2 ≥ uT1 Λ1 u1 + uT2 Λ2 u2 − %GN (uT2 Λ2 u2 ) = uT1 Λ1 u1 + (1 − %GN ) uT2 Λ2 u2 ≥ (1 − %GN )(hT Gh)  

0 ≤ %GN < 1

  

λi (ARN ) ≥ (1 − %GN )λmin (G) > 0 & '

       

       sRN = −A−1 RN g                xopt  !           

                    "

#    

%RN = %(MRN ) < %(MGN ) = %GN      

B = 0

     

MRN := −(G + B)−1 (S − B),

MGN := −G−1 S

    

M := T  (xopt ) = −A(xopt )−1 (H(xopt ) − A(xopt )) 

T

   

x+ = T (x) := x − A(x)−1 g(x)       $    

%(M ) % 

           &'       

      ) 

q

  

G(xopt )

B(x)  ( q

   

 

     

           



       

                   λmax (G(xk ))    λ = λ(G(xk ))             Λ2   λ ≤ tol × λmax (G(xk ))        tol                 !

     "#        $   $                            %&'(%                  n   !   ) *  +," ,-   .          

/      0        qk   qk = 0        B  !     "#      & 0     B(xk )    #   G(xk )   #          /  F (xopt )      #      S  '     B          1 (     H   2         B        3      •        ,   /    3    #          G       

               #      ! 4 5          6 • 7    $                    8 !  /  G 8 !  /    )9  *                   Lp     p          !      #        $    im Z2  !  Z2 = [er(p+1) , . . . , er(n) ]  ej    :#        r(p + 1), . . . , r(n)           q = n − p    8 !  /      p#  q = qk

 

    

        

    ;  0  <    !   7  ;  "   ==> &                   

   ? (    @ . )=.>*  1A=B166



  





                                             !    





      



           !"  !#$!

%



                  

     "#      !               "    $  %" #   &&&    # $ % &     '       $      '   ' ( % )"  *   &          (  

 & ' (  )   $  ! "  % #$

$



      





 *    +,   %-$ 

!

!"  !# 

           !"

 #



                       $     %  + &  )  ( 

  ./   !"  #





0 12  

  +



  ,+    )  *     &       + $



 3 ( 3  0 12 * 

  .4,    ,)     



 %!     -!  &  '       

     &          

 & '5

 (  )   %  !!"  #  

 .) +              

   $

 ' ( 6          

 #

"

                                                 

         

                                                         !          "!       # !        $          !   !       "  "        "   %"  "   

  &   & %                  ' " (          "  

       "   

 

                                                                                                        !      "                                 #                                                   $ %&&' () %*'   +  %,' - %&'   %&.' %/'  ) 

                           0   



        

                                          !    "  #   $ %&'(  )   * +     , -      .  - $ %/( * #         0-    1   #  #            # #   2  +                             +            3           #        *      #   0-  4   0                  5   #    0          *       #    

    

  4    0  6 7 8  #              #              #           #       2  #

    9   2         : #      8  #  #            #       *          ; 7          7      0                            /   #

         

<  

     #                                   =    

       S(V, E)        !   vS    eS #         w(vS )  w(eS )          #          #      0                      #       0          #          

   

     T

    !   vT    eT # T        w(vT )  w(eT )          #          #   0                   #  M : S → R     M (i)            i        8    >  M   2    

7   #   

  .                      0      # >  

  0 0 >  0>0  7     # >     

            



                                                                        ! "#$       & 

 %  

%&! "#$! '  (  ")$ *   + ",$ ' 

 +  "-$ ",.$ 

                      /      +                    k     /             01    k     

   

k 

        

      log2 k      (A, B)      G %  

a∈A



b ∈ B

              

v

= (V, E) 

A ∪ B = V  A ∩ B = ϕ g(a, b)          a  b    2   gv 

 

        0    

 

g(a, b) = ga + gb − 2δ(a, b) 

 

δ(a, b) =

1,  (a, b) ∈ E 0,   .

  

(a, b)    / g(a, b)     (     3   (a1 , b1 ), . . . , (an/2−1 , bn/2−1 )         %n    (X, Y )  X = a1 , . . . , ak  Y = b1 , . . . , bk    i=1 g(ai , bi )

   /      4  5                 

                 !  6  Ga, Gb   a ∈ A, b ∈ B 7 QA = ∅; QB = ∅7  i = 1  n/2 − 1  6  ai ∈ A − QA  bi ∈ B − QB QA = QA − {ai }; QB = QB − {bi }7   a ∈ A − QA  Ga = Ga + 2δ(a, ai ) − 2δ(a, bi )7

    b ∈ B − QB 

Gb = Gb + 2d(b, bi ) − 2d(b, ai )7

 



        

 

G(ai , bi )

  7



         

%

 k ∈ {1, . . . , n/2 − 1}     G = ki=1 g(ai , bi)     {a1 , a2 , . . . , ak }  {b1, b2 , . . . , bk }

   

            O(|E| · |V |3 )                    !             "      ! #    !   $   %  %    & '        (             )  % *+   %   %                   %       %   %       %     , !      %       % %%                        %          %      !              #         O(|E|)  *+          ' %    ( %          )    $ &  #   %    %       !      *+                 

    !         "                     %  

          

  -    

      . %   /           *+ + %  $  +0)  & %   . %         ,        !   )             %     1       ,    P (P1 , P2 , . . . , Pn )   k,      !   S = (V, E)  P1 ∪ P2 ∪ . . . ∪ Pn = V  Pi ∩ Pj = ∅  i = j   ,    Pi   

   i   !,   i   W Li           !  

  i2  W Li = w(j) $& j∈Pi

)        i   P Pi      W Iij    i    j     % 2

            



W Li W Lj

W Iij =

− P Pi P Pj

        

i



j

   

 

CCij 

              (i, j)

CCij = Dij ×  (i, j) 

Dij

      

i



j



      

             

i



j

        

 

          !  

     "         

 

 #                $                  

   % 

 "        &                           &

                 

                       

     !                      '        N 

FC =

CCij =

i,j=1

N 

FC

   

Dij ×  (i, j)

(

i,j=1

)                

ε = maxi,j∈N



W Li W Lj





P Pi P Pj

*

+            

        

 FC                 ,

 '   

       -.   

         /0"1  2     '               ,    $    ,          &

            )/           &      ,      3             )/            

     "      

4,              -.  )/ +             



         

      

N

P0 , P1 , . . . , Pn  

W L(P0 ) < W L(P1 ) < · · · < W L(PN )         Pi              

        

W L(Pi )



N

  

 

     

           



 

   



    

   !      

N     W L(PN −1 )

# 

  i = 0

N

   

        



 ≥ ε N/2 %$ (Pn−i−1 , Pi )" &  N     

  $  





(P1 , P2 , . . . , PN )" W L(P0 ) < W L(P1 ) < · · · <

        

  a∈A ga a B   (ai , bi ) (ai , bi )     

      "

   "

%$  

 '  "

 

 $    





    

 $ 

 $     

 ( 

 

"



g(ai , bi ) ≥ 0

 

"

 '   "

        ( 

Pi



Pn−1−i      

)   *        

   +  ,-         

     

 

    

FC

%+

.  

      

             

         

 %+ /  

ε

                $          *

  $            

  )  

          

   +       

                  ,-    

  $ 

O(|E|)

O(|V |3 )

  ,- 

  012      (

            



 

                        |E|    O(|V |)                           O(|V |2 )                                  ! Comparison of run−time of BA, MKL and SA 200 180

BA SA MKL

160

CPU time (seconds)

140 120 100 80 60 40 20 0

Task graphs (ranges from 1,000 to 50,000 vertices)

               

"           ε0 = 0.01               #!         !  $%&                    '(         )* +       '( ,*'(-  *'(   '(       .           *'(      /             ! 0 1 ,01- "         #!  21           !    1         + %  345      6*2   !  ( 7 4 8 )           



        

                                 !      "        " #" $  $     %    " &   a) Comparision of edge−cut of BA, MKL and SA

Edge−cut Ratio

BA/MKL BA/SA 1

0 Task graph (range from 1,000 to 50,0000 vertices)

b) Comparision of load imbalance of BA, MKL and SA

Load−Imbalance Ratio

1 BA/MKL BA/SA

0.8 0.6 0.4 0.2 0 Task graph (range from 1,000 to 50,0000 vertices)

               ! "     "#  $%   &  $&%           "  "#  "

&!   '(   

  " ' ( #    ) " & ' "  *+++  ,++++  (  &      "!  

        -              

&               ) " &   &      %     "   "!   &       " -  "!       " "!     .    &  &!      

   /   0    

    1   2    "    #    ) " &        &&                &  " & - 1        '" &  &(     &     &      "        *+3!$+3

            

Edge−cut Ratio (by sparse/dense)

0.8



a) Comparison of mapping sparse vs. dense graphs

0.6

0.4

0.2

0 Task graph (ranges from 1,000 to 50,000 vertices)

Load Imbalance (%)

0.5

b) Comparison of mapping sparse vs. dense graphs

0.4 0.3 0.2 0.1 0 Task graph (ranges from 1,000 to 50,000 vertices)

                   



                          0.01                                                                   ! "#       

                          $%  !&   '       (                                                    (                                           )              $% !&  * +                      &,* -./0 1 -20  $%     



        

                         





         

            

      ! "# $      $ %   &'''     (  1 2  ( !

 )*+),, -../0

  "#   3       3

4        "  )1("567 $   '   ( (3  "   5    (   8   

9 -.)10

6 :  (( (   8#     &   $

 3

       4  &'''     %   5 ;  8  

 .7)+.1, -..<0

* :      "#             "  8 5.6367 8

  ;  -..60

, :      "#  (  =       7   3  "  8 5.63166. 8 /   8 $ 

  ;  -..60

 (5 >  !%# ? @  ; 8  

  8   > 117

 *,.) /<3/)7 -.)60

<   $   >#  2

 : A   !     8 

 %   &   $     "  " .,376,5     (  8   B     !   !   !

-..,0

)   $   >#     C                      "  " .,376, 5     (  8   B     !   -..,0 .   $   ># %  !     34 %   8   &   $  "  ./76/ B     !   -../0 7   $   ># !'&8 *7# B            D           5    (  8   '  B  !   -..)0       8#                   8     E  1.+67) -.<70 1   (: 8  $# ? 

    

     3

4  &'''     %   5 ;  8 



.+

1. -..<0 6 >    %E!   ' : # 8    #       5 "   % ;  ( 5   : -.)<0

                                                            

                !    ""      "# !  "       $      " %&' &( )*+ !   !  ,        ,  " ,     !    !" "+  "      !   "    " -     ,"+     "            "   -   #-  " .  #  " "  # !   "    +

 

                                                                                              !"" #                    $                                            %      %                    &'( )(*                             +       %                        $                %  ,               



   

                                                                                                                                                                       !"#

                  $      %   &            '  " (                     $   %  $                 )                                    )  * !+#

         %    $,     -    -  '  "   -$                          %   .          

                       )             &                 )  *       ' " 

         



     

                                          

                                                           !           " #$% &"#$%'  

          (      )  *! +         ,         +  )   )          - .   /  # &-./#'   0                              

   1  #$%  

       2  

 2        #$%3 

  4          1  "#$%  

       

             

  

           

. 5                  6 # 5 *7  &8 #93 .'       5            )  *7        2         )   + /" 157/      #  &   8  8  2 %  '      

               &36/' 3/#  #9$98# # 477  &/3: # 44



   

               

                        ! "#  $%  &' (        )    *   +   "     (    ,  )   -) .  !,-.        )"   /              0                

  "                                      1&2 && &34        !   

    !¿          " 

      $   5  



           6 7   8                 "    -."  6         0       8          /  " 

       8    

   "  "        )            

            

         



                                                                                                                                                                                                          

                                                             !           "                            "   #$%                         &                                           '($)*+          

  !       ,        -            

                                                   -                              &  90                            .       /-0- #      "                            "                   !               

  

123  !      &             4  2        

-     "                     15 63 7        .      - 

                                     "           8                       '  Rp       r+       p       



   

                i    cb,i       qi      b   eq           Dax         ci      kl,i           Dp,i                       cp,i                  u                    rkin,i                !    

       "   " #           !         "   # $%& X                  "                                                   u  ci   '

(1 − b ) 3 kl,i ∂cb,i liq + X (cb,i − cp,i |r=Rp ) + (1 − X)rkin,i ∂t b Rp = Dax

(1 − p )

∂ 2 cb,i ∂cb,i , +u 2 ∂x ∂x

  ∂qi ∂cp,i ∂cp,i 1 ∂ sol + p − p Dp,i 2 = 0, r2 − rkin,i ∂t ∂t r ∂r ∂r

!(#

!)#

           $(*&                            qi  cp,i    "  +   ,       - ./  012,                 +   ,                    !( )#                 $3& 

     "                    +                     "                                                     "   

  ,                                                             /  4  2         $(%&

         



  

                   

                                 Φ              f (x, u)                  ! 

xk+1 = Φ(xk ) ⇔

τ x∗k+1 = xk + t=0 f (x(t), u(t))dt, xk+1 = Px∗k+1 .

"

                                          # P  $

 # $ %    #      xk        k            &   ! Φ(xk ) − xk  ≤ steady . '     ()                

        ! min

QDe ,QFe ,QIII ,τ

 

Costspec (k)

Φ(xk ) − xk  ≤ steady ,

*

PurEx,k ≥ PurEx,min , QI ≤ Qmax .

$        

     ! τ PurEx,k = τ

cEx,k (t)QkEx (t) dt A

0

(cEx,k (t) A

, + cEx,k (t))QkEx (t) dt B

+

0

 A               B    ,    -      %                      #         

     .                                -      QDe   QFe   QRe = QIII         τ  %   &                β   /'0   

  -   QS   !   Q1 (1 − b )A L 1 1 , β1 = QS = − τ HA Q S F     1 1 1 1 Q2 Q3 1 − = − , . β2 = HB Q S F β3 HA Q S F

1



   

                                       HA  HB                                                                     !           "    #  $%#   &&$% '()*     

  + ',-*                                      #      .                 .     "            #       #              

         

          %/    0       0                        1              1        0       0      0            .                   2    "  %/  0                       

                2  

0            # .            3            1.       0               4                               #                     1     Hr 4

         



   Cost(j) + ∆βjT Rj ∆βj

k+Hp

min

Γ =

[βk ,...,βk+Hr ]



⎧ ⎨

j=k

x˙ j = f (xj , βj ), xj+1,0 = Pxj (τ (j)), ⎩ j = k, · · · , k + Hp .



PurEx,Hr ,k + ∆PurEx,k ≥ PurEx,min,k , PurEx,Hp ,k + ∆PurEx,k ≥ PurEx,min,k , QI,j ≤ Qmax , g(βj ) ≥ 0, j = k, · · · , k + Hp .      

  

  

         

                             

              Γ    

      

             

                                                             

Hp   

 



              P !                        "                # $        

g(βj )

 

                                         

 %

PurEx,Hr ,k =

k+H 1 r PurEx,j , Hr

&

j=k



      

 

∆PurEx

        '   (

                

   

 '  %

∆PurEx,k = PurEx,(k−1),meas − PurEx,(k−1) .

)*

+                          (                         

 



 # 

               

                           !,-           ./*0 

                        

    

        

                

     !               (  ( "                1 



   

          

       

             

Jest (p) =

nspecies  



(ci,meas (t) − ci,Re (t))2 dt

  

    !    $     

 

0

i=1

 

    

Ncol

Jest (p)

p

 

   

 !"# $   %&'

Ncol

nspecies

   

 $    (    

           (        )     (          *   +  

Hi

   

   

    kl,i       km      ,    -./0                      (     $  $     1  (       2       (              

      ) 0 "

   (  "

     )         (

               $  $    -./0               $    !/34     (    2    )    (     (        $  $   2                 -./0              (      1   $           

    $  (         (    5     (   (  %6'        



  



   



  

  

     

(

       ./0          (    (   $       (    1            (          (     (          7  (  /                  $  (     (     $          

 2  

  

    

   (        (    

       

  

 (  $   (  $  

         

   

 $  $  (  

       

∆PurEx =

min j=(k−1,··· ,k−1−Ncol )

(PurEx,j − PurEx,j,meas ).

        )     $           



60th

  "  (    )

8

55.0%    Rj = 0.02 I(3,3)



         



                      

        

 !     "   #    $" %&   " '(

               Hr = 1          Hp = 60                                                                                 

      55.0%          !                       

         "                             #                                               

                 $%&                       

                     



   

             55 %        

   

          

            

            

             

                   

                                           





    

   

       P    !



0 ··· ··· 0 I

⎜  ⎜I  ⎜ ⎜ P = ⎜0 I ⎜ ⎜  ⎝    0 ···



⎟ 0 · · · 0⎟ ⎟      ⎟   ⎟ ⎟  ⎟  0⎠ I 0 I 0

I     (n, n)    n         

                

Ncol



        

     

                   

       

 

       

L D p b dp kl,i ρ η Dp νi Hi

!" 

ki kij X

($ 

"" * "# *

#$%&&  3 ' ()"%)&"(  3 ' ") 

Qmax " '  $( µ

km #!"& ' &" %("   ' keq "!) * " ' 3 Qf & '  & '+ , steady " * "&  2 ' Ni ( ( (   ( & -% * cgl &"" ' "( # %")  * cfr " ' 2 qi = Hi cb,i + ki cb,i + kij cb,i cb,j , i, j = 1, 2  i = j. c liq rkin,i = νi km ( kb,i − cb,j ), i, j = 1, 2  i = j eq

   .  % /  0  1  0        2       +)), $"*$) (   % 3 4               

 5         6 7  &()!($ +)$$, & 4

8% 97 4

8 2 5 :   :   $ 97 4

8 +(""&, # 3;% <% / =>  ?6 ?  @                      A B 4  0 

 (()"*(&"# +(""",

  =>% /  9    3           A                 9% < 5% "&")"( $ <%           6  C8 4  

5  % 1 D > +)) , ! <  % <

 5 2

7   8   5

 +(""(, ()*$

/    4 

 9 % < 75  5      &   #        

  2A4B /  



+))$,  #*$"



               

 



  

        

 !""#!$" !%%!

"% & ' ( )*      (       , 

,

   



- .

+

, 

/





+ 0    !%%! "" & ' ( ( )  1 2  3     

    

      

 



 $#""4 !%%!

 

"! & 5   55          



 

  

"$ & 5  3 , 7 7    + 



+

    



       

":  ;

 8    55 



   9  0  

    

"%6#""6 !%%%

   

 $$$#$:4 "6

< .5 

8   

  =    <5



2 ;'

 ,  ,



- .      =  '  >   ' 8, > $ ? @$6 8, 8  ? $"6$@$6%$! ,=



"6 "@ ?(7 2 ?(7   ' "@ 2 > ""% ?(7 A 3* "" "B C & 8 (    >'   25



    5  '  7        D

  ,  + ) - . , 

!%%" "4 '05 ( >    



 

 E ( 

       

"$4#"::

!%%$ "6 2  (  ) 35         

   

     5

 

   

!%%$

" 2  (  ) !%%: 3     

   !    

   

     " # $  %&&'( )* +   !!, -  .(/0 !122 3     

      4 5  6     "    

7      

    



!%%:

!% F & A ( A 2

 + 2 A0

-    "4

                          

    



          !       !  "

  #  ! $     #% &       #!          

   !   !    $ !  "            !  !   !#     

   % '             ! 

 !   %   #     

  !(  

 

          

$%

)     #!  "    

 #     !   !            !  !%

 

                                                  !                 !        "        #                                         f : Ên+ → Ê             f (x ) ≥ f (x)  xi ≥ xi (i = 1, . . . , n),     f (x ) ≤ f (x)  xi ≥ xi (i = 1, . . . , n);                         $                %                        &'() &'*) &() &++) &,) #                

                    -       "        



 

                                                         

                                                         

min{F (x, y)| Gi (x, y) ≤ 0 (i = 1, . . . , m), x ∈ C, y ∈ D}

(P)

 C               X ⊂ Rn +, D p              Y ⊂ R+ ,  F (x, y) : X × Y → R, Gi (x, y) : X × Y → R           y    x                  x    y. n !    P (x), x ∈ Rn + ,        R+ ,         P+ (x) + P− (x),  P+ (x) (P− (x),  "   

    P (x)    #  "    $          

                    #%"                    

min{!c, y : A(x)y ≤ b, y ≥ 0, x ∈ X}

        &   '() *              #%"                      +         F (x, y), Gi (x, y), i = 1, . . . , m,          y    x          #%"                         &  ,-              .      / 0                        F (x, y)  Gi (x, y), i = 1, . . . , m.                                             x ∈ Rn +   x        #  "       1           

          #        " M ⊂ Rn +       β(M )          

γ(M ) := inf{F (x, y)| Gi (x, y) ≤ 0 (i = 1, . . . , m, x ∈ M, y ∈ D}. (P(M))

       



                   

{Mk }                    {Mk }    Mk+1      Mk )    limk→+∞  Mk = 0,           ∗ ∩∞ k=1 Mk = {x }.                                         

                      !!                "         #

 

    

        

                       

 

     $   %   &  '    !! 

                    &  (                                     &  )                              !!                                  * +                           

        

               

                  ,           

          

%                                            &   &  -                           $                  

    .         $                         /        %        $                0         &  1                                          !!    *                          2 %  &  3                                           +

                              .                         

                                        



 

                                                  

                                        !!                                 x, y                 x   "#$% "#&% '                          x     n       (x, y)     n + p)   "#(% )         X                  * + G(x, y) = (G1 (x, y), . . . , Gm (x, y)),   G(x, y) ≤ 0   Gi (x, y) ≤ 0 i = 1, . . . , m.



α

,                 ' 

  α ≥ sup{F (x, y)| x ∈ C, y ∈ D}. -   α ∈         α = +∞.  -              .!,/(¯ x0 , y¯0 )        ,  M1 = X, P1 = S1 = {M1 }, k = 1.  #      M ∈ Pk      β(M ) 

Ê

γ(M ) := inf{F (x, y)| G(x, y) ≤ 0, x ∈ M ∩ C, y ∈ D}.

#

xk , y¯k ) 2       0 1      .!,    (¯                     3 *     M ∈ Sk    β(M ) ≥ min{α, F (¯ xk , y¯k )}    k k k k    F (¯ x , y¯ ) = +∞  (¯ x , y¯ )    +  4  Rk              Sk .  5 - Rk = ∅     6 .!, = (¯ xk , y¯k )                     .!,= ∅).  & . Mk ∈ argmin{β(M )|M ∈ Rk }. ,  Mk          4  Pk+1     Mk .  $ 4  Sk+1 = (Rk \ {Mk }) ∪ Pk+1 . ,  k ← k + 1     ,  # 

'            !           β(M )           6 (a) M  ⊂ M ⇒ β(M  ) ≥ β(M );

(b)

β(M ) < +∞ ⇒ M ∩ C = ∅. 0

1  β(M )                   # '         

       



    F (x, y)  Gi (x, y), i = 1, . . . ,      

     C, D                                                 ! γ(M ); "                    β(M ) = sup inf{F (x, y) + !λ, G(x, y) | x ∈ M ∩ C, y ∈ D}. λ∈

Ê

m +

"

#                  !          !   "     !        $ %               &   !   {(x, y)| Gi (x, y) ≤ 0 (i = 1, . . . , m), x ∈ M ∩ C, y ∈ D}  β(M ) < +∞. ' !

         β(M ) < +∞      ()$

Ì    

    

{Mkν } ⊂ {Mk }



α

       

   



x∗ ∈ C.





lim β(Mk ) = inf{F (x , y)| G(x , y) ≤ 0, y ∈ D},

k→∞

*

β ∗ := limk→∞ β(Mk )             y       *       (x∗ , y ∗ )      α < +∞      *     





$ +    !    {Mkν } ⊂ {Mk } !   !    !         $$ ( ,)$ -       

     x∗ .        M   β(M ) ≥ α      β(Mk ) < +∞      !  Mk ∩ C = ∅ ∀k. +   Mk ∩ C  !    &  !  

   +∞ ∗ .   ∩+∞ k=1 (Mk ∩ C) = (∩k=1 (Mk ) ∩ C = ∅. +! x ∈ C. ∗ '  !   &  β(Mk )     β = limk→+∞ β(Mk )    β ∗ ≤ α. /



γ := inf{F (x, y)| G(x, y) ≤ 0, x ∈ C, y ∈ D}. ∗

+    β ≤ γ. -   ∗

0

! *



β = inf{F (x , y)| G(x∗ , y) ≤ 0, y ∈ D} ≥ ≥ inf{F (x, y)| G(x, y) ≤ 0, x ∈ C, y ∈ D} = γ, ∗

  β = γ. '! α < +∞,  β ∗ ≤ α < +∞     !  $ & ' .  *                    $ +       

     !    *            β ∗ = +∞$ 1         ! α < +∞.



 

                        α             

β(M )

     

                !            α        

Ì     C         Ên , D     

   Êp ,   F (x, y), Gi(x, y), i = 1, . . . , m,               y      x.    α                                  

                 Mk , ν = 1, 2, . . . ,        x∗ ∈ C        ν

min{F (x∗ , y)| G(x∗ , y) ≤ 0, y ∈ D}

           y (x∗ , y ∗ )     



∈D

"

  "     



    #    $     lim β(Mk ) = inf{F (x∗ , y)| G(x∗ , y) ≤ 0, y ∈ D}

k→∞



sup{F (x, y)| x ∈ C, y ∈ D} ≤ α < +∞.

%

&     ' 

β(Mk ) ≤ inf{F (x, y)| G(x, y) ≤ 0, x ∈ Mk ∩ C, y ∈ D} ≤ inf{F (x∗ , y)| G(x∗ , y) ≤ 0, y ∈ D}   

β(Mk ) 0 β ∗ ≤ inf{F (x∗ , y)| G(x∗ , y) ≤ 0, y ∈ D} ≤ α < +∞.    %     

inf{F (x∗ , y)| G(x∗ , y) ≤ 0, y ∈ D} > β ∗ .

(

)           ∗





sup {F (x , y) + !λ, G(x , y) } =

λ∈

Ê

m +

F (x∗, y) if G(x∗ , y) ≤ 0 +∞ otherwise

  

inf{F (x∗ , y)| G(x∗ , y) ≤ 0, y ∈ D} = inf sup {F (x∗ , y) + !λ, G(x∗ , y) }. y∈D λ∈

Ê

m +

*

       



       D,           inf sup {F (x∗ , y) + !λ, G(x∗ , y) } = sup inf {F (x∗ , y) + !λ, G(x∗ , y) }.

y∈D λ∈

Ê

m +

λ∈

Ê

m +

y∈D



        sup inf {F (x∗ , y) + !λ, G(x∗ , y) } > β ∗ .

y∈D λ∈Rm +



     λ˜    ˜ G(x∗ , y) > β ∗ . min{F (x∗ , y) + !λ, y∈D

˜              (x, y) → {F (x, y)+ !λ, G(x, y) }     !   ! y ∈ D,   " Uy  Ên   x∗    " Vy  Êp   y    ˜ G(x , y  ) > β ∗ F (x , y  ) + !λ,

∀x ∈ Uy ∩ C, ∀y  ∈ Vy .

#    " Vy , y ∈ D         D     !  S ⊂ D      " Vy , y ∈ S,     D. $

U = ∩y∈S Uy     y ∈ D   y ∈ Vy    y  ∈ S,     x ∈ U ⊂ Uy    



˜ G(x, y) > β ∗ F (x, y) + !λ,

∀x ∈ U ∩ C, ∀y ∈ D.

 Mk ⊂ U   %   k, "  ∩k Mk = {x∗ }.     & "  '     sup inf{F (x, y) + !λ, G(x, y)| x ∈ Mk ∩ C, y ∈ D} > β ∗ .

λ∈

Ê

m +

  β(Mk ) > β ∗ ,       ( )      *(            "     α < +∞   inf{F (x∗ , y)| G(x∗ , y) ≤ 0, y ∈ D} ≤ max{F (x, y)| x ∈ C, y ∈ D} < +∞.

$          D " "        "   (           "   Ì            +   

      D              ,         D    {y ∈ D| (∃x ∈ C) G(x, y) ≤ 0} ⊂ D ⊂ D.



 

           D   D                 β(M ) = sup inf{F (x, y) + !λ, G(x, y) | x ∈ M ∩ C, y ∈ D}. λ∈

Ê

m +

 

             min{F (x, y)| Gi (x, y) ≤ 0 (i = 1, . . . , m), x ∈ C, y ∈ D}

(P)

                & '          

      sup{F (x, y)| x ∈ C, y ∈ D} ≤ α.     



   ∗ !     λ∗ ∈ Êm +   inf x∈C {F (x, y)+!λ , G(x, y) } → +∞  y ∈ D, y → +∞.     !       D           D∗ := {y ∈ D| ϕ(y) ≤ α},   ϕ(y) := inf {F (x, y) + !λ∗ , G(x, y) } x∈C

   " #  D∗   $   #   

{yν } ⊂ D∗ 

y ν  → +∞   # ϕ(y) → +∞ #   ! %  # y ∈ D  G(x, y) ≤ 0   x ∈ C   inf x∈C {F (x, y) + !λ∗ , G(x, y) } ≤ inf x∈C {F (x, y)| G(x, y) ≤ 0, y ∈ D} ≤ α,   ϕ(y) ≤ α,  ' 

$ y ∈ D∗ .  $ D    &      &

    C         Rn , D     Êp             F (x, y), Gi (x, y), i = 1, . . . , m     x     y     x. !      "  

                      #   x∗ ∈ C     y ∗ ∈ D   Gi (x∗ , y ∗ ) < 0, i = 1, . . . , m.

     #  '

   (  x∗  ∩k Mk = {x∗ }.

 !      {F (x∗ , y) + !λ∗ , G(x∗ , y) ≥ inf x∈C {F (x, y) + !λ , G(x, y) } → +∞  y ∈ D, y → +∞. )   $        F (x∗ , y ∗ ) + !λ, G(x∗ , y ∗ ) → −∞  λ → +∞.    $  &       (y, λ) → F (x∗ , y) + !λ, G(x∗ , y) 

 &$   ∗

inf y∈D supλ∈Êm {F (x∗ , y) + !λ, G(x∗ , y) } + = supλ∈Êm inf y∈D {F (x∗ , y) + !λ, G(x∗ , y) }. + ˜∈    $  (      &  λ

Êm+ 

       



˜ G(x∗ , y) } > β ∗ . inf {F (x∗ , y) + !λ,



y∈D

  (D)       ∗

˜ G(x , y) !λ,

D.

   

y → F (x∗ , y) +

         

˜ G(x∗ , y) } > β ∗ . min {F (x∗ , y) + !λ,

y∈vert(D)

y ∈ vert(D),            ˜ G(x∗ , y)  x∗        U (y)  n   y → F (x∗ , y)+!λ, ∗ x    ˜ G(x, y) > β ∗ ∀x ∈ U (y). F (x, y) + !λ,    



Ê

U = ∩y∈vert(D) U (y)

    

˜ G(x, y) > β ∗ F (x, y) + !λ, !     

k

    

∀x ∈ U, ∀y ∈ D.

Mk ⊂ U :

˜ G(x, y) > β ∗ F (x, y) + !λ,

∀x ∈ Mk ∩ C, ∀y ∈ D,

 

˜ G(x, y) | x ∈ Mk ∩ C, y ∈ D} > β ∗ , β(Mk ) = sup inf{F (x, y) + !λ, λ∈

"



Ê

m +

β(Mk ) 0 β ∗ . & '

  #                     $    %&&

α

     '



   

(     )   

min{f (x)| gi (x) ≤ 0 (i = 1, . . . , m), x ∈ C}

(SP )

C          Rn ,  f, gi : Rn → R, i = 1, . . . , m.  D = {y ∗ } ⊂ Rm  F (x, y) ≡ f (x), Gi (x, y) ≡ gi (x) ∀y ∈ Rm    *       *     D.  $    %&& α        +           M1 ⊃ C,         M ⊂ M1         

β(M ) = sup inf{f (x) + λ∈

Ê

m +

m 

λi gi (x)| x ∈ M ∩ C}.

i=1

$    !   ,   



 

        f (x), gi(x), i = 1, . . . , m,                                                          Mk ⊂ Mk         x∗   Mk   ν

            

ν

  

x∗      x∗ ∈ C   lim β(Mk ) = inf{f (x)| gi (x) ≤ 0 (i = 1, . . . , m), x ∈ C}.      lim β(Mk ) < +∞,   x∗ ∗         x ∈ C       x∗   ∗ gi (x ) ≤ 0, i = 1, . . . , m.          gi0 (x∗ ) > 0    i0 ∈ {1, . . . , m},            gi0 (x),       1 ∗ ∗  W    x   gi0 (x) > ρ := 2 gi0 (x ) ∀x ∈ W.   k     Mk ⊂ W      β(Mk ) = supλ∈Êm inf x∈Mk ∩C {f (x) + + %m i=1 λi gi (x)} ≥ supλi0 ≥0 inf x∈Mk ∩C {f (x) + λi0 ρ} = +∞,  !     β(Mk ) < +∞. & '    

"   #             $%                            

      &       '() 

F (x, y), Gi (x, y)

            '  

   

∗ f[r,s] = min{!c(x), y | A(x)y − b(x) ≤ 0, r ≤ x ≤ s, y ≥ 0}

Ê

Ê

x ∈ Rn , y ∈ Rp , c : Rn → Rp , A : n → m×p , b : {x| r ≤ x ≤ s} ⊂ Rn . "        '()  

 

F (x, y) = !c(x), y ,

G(x, y) = A(x)y − b(x),

             

y

 

$#%)*

(PL)

Êm → Rp, [r, s] :=

p C = [r, s], D = R+ .

M ⊂ [r, s]

   

β(M ) = sup inf inf {!c(x), y + !u, A(x)y − b(x) } u≥0 x∈M y≥0

'#+)

= sup{−!b(x), u + inf inf {!c(x) + (A(x))T u, y }} x∈M y≥0

u≥0

= sup{−!b(x), u + h(u)} u≥0



 

h(u) =

0 if (A(x))T u + c(x) ≥ 0 ∀x ∈ M −∞ otherwise

, 

β(M ) = sup{−!b(x), u | (A(x))T u + c(x) ≥ 0 ∀x ∈ M }. u≥0

'#-)

       



 A(x) = [aij (x)] ∈ Êm×p,   aij (x), cj (x), bi (x)            α := sup{!c(x), y | x ∈ [r, s], y ≥ 0} < +∞      

      

 

Ê Ê

∗ T ∗ ∗ (∀x∗ ∈ [r, s]) (∃u∗ ∈ m + ) (A(x )) u + c(x ) > 0; p ∗ ∗ ∗ ∗ ∗  (∀x ∈ [r, s]) (∃y ∈ + ) A(x )y − b(x ) < 0;     α                                  {Mkν } 

      x∗ ∈ C   

   



inf{!c, y | A(x∗ )y ≤ b(x∗ ), y ≥ 0}

           y ∗ ∈ Êp+            (x∗ , y ∗ )  !  !  

    

          

              



T



minx∈U∩C (A(x)) u + c(x) > 0.

U

 

x∗





inf x∈U∩C [!c(x), y + !u∗ , A(x)y − b(x) ] = inf x∈U∩C [!c(x) + (A(x))T u∗ , y − !u∗ , b(x) ] → +∞  y ≥ 0, y → +∞,        

     

' &

              aij (x),       c(x) ≡ c, b(x) ≡ b,



       

      

 !"  #       $          %        $   &         $   !'"            (     )  

 *      #    *    

a1 (x), . . . , am (x)   

U   x∗

A(x),        0 ∈ intconv{a1 (x), . . . , am (x), c(x)} ∀x ∈ U     $      u∗   #   (A(x∗ ))T u∗ + c(x∗ ) > 0      u∗ > 0,  (A(x))T u∗ + c(x) > 0   

x +    x∗ ).     

W,     r > 0,   ,   W ⊂ conv{a1 (x), . . . , am (x), c(x)} ∀x ∈ U.      - x     {a1 (x), . . . , am (x), c(x)}        {y| A(x)y ≤ e, !c(x), y ≤ 1}  e = (1, . . . , 1) ∈ m ),  

      x ∈ U  

        

   1/r   ,         

x ∈ U   {y| A(x) ≤ b(x), !c(x), y ≤ α}       

.       {y| A(x) ≤ b(x), !c(x), y ≤ α, x ∈ U }     

     

Ê

    $     #  

          

  $ !1"2

/0      



 



min!c, x + !d, y m  G0 + yj Gj 1 0 L0 +

j=1 n 

xi Li0 +

i=1

m 

 

yj L0j +

j=1 n

n  m 

xj yj Lij ≺ 0



i=1 j=1

x ∈ X = [p, q] ⊂ R , y ∈ Rm +



x, y

      

 

G0 , Gj , L0 , L0i , Lj0 , Lij     G 1 0, L ≺ 0     

             

G

      

   



  



A00 (x) = ⎣ L0 +

%Gn0 i=1

!x, c

A B

     

L



 d

A 0 0 B







xi Li0 ⎦ , Aj0 (x) = ⎣ L0j + d

Q00

Gj % n i=1

⎤ xi Lij ⎦ ,

dj

d

⎡ ⎤ 0 = ⎣0⎦ . 1 d

!        "#$              

min{t| A0 (x, p, q) +

m 

yj Aj (x, p, q) 1 tQ, y ≥ 0, x ∈ X}

j=1





  Aj0 (x) Q00 , Q= , Q01 = 0 Aj1 (x, p, q) d Q01 d ⎤ ⎡ (x1 − p1 )Gj ⎢ (q1 − x1 )Gj ⎥ ⎥ ⎢ ⎥ , j = 0, 1, . . . , n. ··· Aj1 (x, p, q) = ⎢ ⎥ ⎢ ⎣ (xn − pn )Gj ⎦ (qn − xn )Gj d

Aj (x, p, q) =

%     

&'%                 

    !   (  )   (  *  !    *        "#$  +*     ,   -&&

α

*   * * !         *    )   (        *  *

        (∀x ∈ X)(∃Z1 2 0)



Tr(Z1 Q00 ) = 1, Tr(Z1 Aj0 (x) > 0, j = 1, . . . , m

                    ⎧ ⎤⎫ ⎡ m ⎨ ⎬  max min yj Aj (x, p, q) − tQ)⎦ t + Tr ⎣Z(A0 (x, p, q) + Z0 t∈R,y≥0,x∈M ⎩ ⎭ j=1

            !"   max {t| Tr(ZA0 (x, p, q)) ≥ t, Tr(ZAj (x, p, q)) ≥ 0 ∀x ∈ vertX, j = 1, . . . , m, Tr(ZQ) = 1, Z 2 0}

   X     #   X. $                #          

$  %               &

     ' (      %     #     #        )  *                  &      +   )   #      #     "    #           ,     #&           #           # #       -                         .         / ∗ f[r,s] = min{!c(x), y + c0 (x)| A(x)y + B(x) ≤ b, r ≤ x ≤ s, y ≥ 0}

. (GPL)   x ∈ Rn , y ∈ Rp , c : Rn → Rp , c0 : Rn → R, A := Rn → Rm×p , B : n R → Rm×n , b ∈ Rm , [r, s] ⊂ Rn+ .  A(x) = [aij (x)],     i&  B(x) Bi (x),         #    min s.t.

p  j=1 p  j=1

yj cj (x) + c0 (x) yj aij (x) + Bi (x) ≤ bi (i = 1, . . . , m)

y ≥ 0,

r ≤ x ≤ s.

-          #  ) 

(GPL)



 

F (x, y) = !c(x), y +c0 (x), G(x, y) = A(x)y+B(x)−b, C = [r, s], D = {y ≥ 0}.     

           

  

(P L)

      



    

 B(x)     c0 (x) = !c0 , x ,  c0 ∈ Rn , B(x) = Bx  B = [bik ] ∈ Rm×n .    j,     cj (x), aij (x), i = 1, . . . , m,                [r, s],      [r, s].              j,       cj (x), aij (x), i = 1, . . . , m         x    c0 (x)

            

(GP L) 

        

ϕ∗[r,s] = sup inf{!y, c(x) +!c0 , x +!λ, A(x)y+Bx−b | x ∈ [r, s], y ≥ 0}.

 !

λ≥0

" 

λ≥0

  

inf{!y, c(x) + !c0 , x + !λ, A(x)y + Bx − b | x ∈ [r, s], y ≥ 0} = −!b, λ + inf inf {!Bx, λ + !c0 , x + !c(x) + (A(x))T λ, y } x∈[r,s] y≥0

= −!b, λ + h(λ) 



h(λ) =

inf x∈[r,s] [!Bx, λ + !c0 , x ] −∞  .

  

 q ∈



c(x) + (A(x))T λ ≥ 0 ∀x ∈ [r, s],  #

Ên :

inf !q, x = !q, r + max{!r − s, t | t ≥ 0, t ≥ −q}.

r≤x≤s



 $    min{!q, % x | r ≤ x ≤ s} = min{!q, r + !q, x − r | 0 ≤ x − r ≤ s − r} = !q, r + qi <0 qi (si − ri ) = !q, r + max{!r − s, t | t ≥ 0, t ≥ −q}. ' &      %

inf r≤x≤s {!Bx, λ + !c0 , x } = !B T λ + c0 , r + max{!r − s, t | t ≥ 0, t ≥ −B T λ − c0 }. & 

∀x ∈ [r, s]





j '    A  Aj ,       !A(x), λ + c(x) ≥ 0

 

!Aj (x), λ + cj (x) ≥ 0

∀x ∈ [r, s], ∀j = 1, . . . , p.

( J+    

j    

cj (x), aij (x), i = 1, . . . , m      J−    

j    

cj (x), aij (x), i = 1, . . . , m 

       



    J + ∪ J − = {1, . . . , p}.    j = 1, . . . , p,   !Aj (x), λ + cj (x) ≥ 0 ∀x ∈ [r, s] m  ⇔ λi aij (x) + cj (x) ≥ 0 ∀x ∈ [r, s] i=1

 %m λi aij (r) + cj (r) ≥ 0 if j ∈ J+ ⇔ %i=1 m i=1 λi aij (s) + cj (s) ≥ 0 if j ∈ J−



       ϕ∗[r,s] = sup{−!b, λ + inf {!Bx, λ + !c0 , x | x∈[r,s]

!Aj (r), λ + cj (r) ≥ 0 (j ∈ J+ ); !Aj (s), λ + cj (s) ≥ 0 (j ∈ J− ), λ ≥ 0}

  i   B Bi . !     " "  "        "  !c0 , r + max{!r − s, t +

m 

λi [!Bi , r − bi ]}

i=1

%m

− λi Bi − t ≤ c0

%i=1

− m λi aij (r) ≤ cj (r) (j ∈ J+ )  

%i=1 m −

− i=1 λi aij (s) ≤ cj (s) (j ∈ J )

λ ≥ 0, t ≥ 0

 "  !c0 , r + min{

 





cj (r)yj +

j∈J+



aij (r)yj +

j∈J+



cj (s)yj + !c0 , z }|

j∈J−

aij (s)yj + !Bi , r + z ≤ bi (i = 1, . . . , m),

j∈J−

y ≥ 0, 0 ≤ z ≤ s − r.

 x = r + z,  "   min {



cj (r)yj +

j∈J +

 



j∈J+

aij (r)yj +



cj (s)yj + !c0 , x }

#

aij (s)yj + !Bi , x ≤ bi (i = 1, . . . , m),

$

j∈J −



j∈J−

y ≥ 0, r ≤ x ≤ s.

   "     (GP L)    

%



 

aij (x) ← aij (r),

cj (x) ← cj (r)

j ∈ J+ )



aij (x) ← aij (s),

cj (x) ← cj (s)   j ∈ J− ). % %         j (r)yj + j (s)yj    j∈J+ c% j∈J− c%      !y, c(x)    j∈J+ aij (r)yj + j∈J− aij (s)yj 

       !A(x), y ,        

Ì     



 

      

(GP L)                 (GP L). 

        

 

      

          

!" #            

                 $%&                         '   ' " (

     ))         '     *      



!

          '    

       '" +'                    $%&                   

              

"" $,&"



-            

   

      

" !λ, B(x) + c0 (x)

   

     x,

           .

 x.

   j = 1, . . . , n

   !Aj (x), λ

+ cj (x)

   

"

(               *   

       '

[r, s]

    

  

inf {!B(x), λ + c0 (x)} = min{!λ, B(wi ) + c0 (wi )| i = 1, . . . , 2n }

x∈[r,s]  

n

w1 , . . . , w2

  '   

[r, s],

       ,

        

max{−!b, λ + t

−!B(wi ), λ + t ≤ c0 (wi ), i = 1, . . . , 2n

%m

− %i=1 λi aij (r) ≤ cj (r) (j ∈ J+ ) ""

− m λi aij (s) ≤ cj (s) (j ∈ J − ) i=1

λ≥0 !/   

  .    

  

 

!Aj (x), λ + cj (x) ≥ 0 ⇔ !Aj (wk ), λ + cj (wk ) ≥ 0                

j = 1, . . . , n :

k = 1, . . . , 2n ,

       



!c0 , r + max{!r − s, t + !Br − b, λ } s.t. !Aj (wk ), λ + cj (wk ) ≥ 0 λ ≥ 0, t ≥ 0

j = 1, . . . , n, k = 1, . . . , 2n

                 c(x) ≡ c ∈ Êp , c0 (x) ≡ 0, B(x) ≡ 0            

      !     "      # $   %     # "    &    '    #     (      

)     *     #   #

 + xil      #    i 

    l, ylj      #  l    j, zij    #    i          j, plk  , #   k   ,  #    ,   l,   Cik  , #   k    i.   #  ,      ci , dj #    i     j,         ,   xil , ylj , zij , plk      &  ) −

 i

ν

ci xiν +

 ν

j

dj yνj +

 i

(dj − ci )zij .

j

     

% % x + z ≤ Ai %ν il % j ij        x − y il i j lj = 0 %  %   %i xiν ≤ Sν (p − P )y %ν νk %jk νj + i (Cij − Pjk )zij ≤ 0           ν yνj + i zij ≤ Dj xiν , yνj , zij , pνk ≥ 0

 Ai , Sν , Pjk , Dj ,      #    ,



    &              ,    Cik  , #   k    i. -       "    &        , ,   plk . !      , #    "     # -

 %   )          ,  '   .α                 

/        ,"    min f1 (x, y) + f2 (x, y) + u(x) s.t. gi (x, y) + hi (x, y) + vi (x) ≤ 0 (i = 1, . . . , m) x ∈ C, y ∈ D.

(PC)



 

 C ⊂ [a, b] ⊂ Rn+ , D         Rp , u(x), vi (x)        f1 (x, y), f2 (x, y), gi (x, y), hi (x, y) (i = 1, . . . , m)               y     x,        x     y.              f1 (x, y), gi (x, y)     x   f2 (x, y), hi (x, y)           M = [r, s] ⊂ [a, b]      (M ))              x ∈ C   x ∈ C ∩ [r, s]. Ì              (M ))     β(M ) := min f1 (s, y) + f2 (r, y) + u(x) s.t. gi (s, y) + hi (r, y) + vi (x) ≤ 0 (i = 1, . . . , m) r ≤ x ≤ s, y ∈ D.

(RC(M ))

         α    f1 (s, y), f2(r, y), gi (s, y), hi(r, y)               f1 (x, y), f2 (x, y), gi (x, y), hi (x, y),  !(M )         (M )  "   β(M )            #  "    " $                       %    {Mk = [rk , sk ]}       x∗    lim β(Mk ) = β ∗ ,

k→∞

where

β ∗ = min{f1 (x∗ , y) + f2 (x∗ , y) + u(x∗ )| gi (x∗ , y) + hi (x∗ , y) + vi (x∗ ) ≤ 0 (i = 1, . . . , m), y ∈ D}.

#&

   k  (xk , yk )           !(Mk )),   f1 (sk , y k ) + f2 (rk , y k ) + u(xk ) = β(Mk ), gi (s , y k ) + hi (rk , y k ) + vi (xk ) ≤ 0 (i = 1, . . . , m), k

rk ≤ xk ≤ sk , y k ∈ D. ∗ k ∗ k ∗ '  ∩+∞ k=1 Mk = {x },     r → x , s → x  k → +∞. (          D          %     yk → y∗ ∈ D. "                   

f1 (x∗ , y ∗ ) + f2 (x∗ , y ∗ ) + u(x∗ ) ≤ lim β(Mk ), k→+∞

gi (x∗ , y ∗ ) + hi (x∗ , y ∗ ) + vi (x∗ ) ≤ 0 (i = 1, . . . , m).

*    !(Mk ))        (Mk )), β(Mk ) ≤ min{f1 (x, y) + f2 (x, y) + u(x)| gi (x, y) + hi (x, y) + vi (x) ≤ 0 (i = 1, . . . , m), rk ≤ x ≤ sk , y ∈ D},

#)

       



  x∗ ∈ ∩+∞ k=1 Mk  

      k : β(Mk ) ≤ min{f1 (x∗ , y) + f2 (x∗ , y) + u(x∗ )| . gi (x∗ , y) + hi (x∗ , y) + vi (x∗ ) ≤ 0 (i = 1, . . . , m), y ∈ D} = β ∗ .

    k : β(Mk ) ≤ β ∗ ≤ f1 (x∗ , y ∗ ) + f2 (x∗ , y ∗ ) + u(x∗ ).



      

  lim β(Mk ) = f1 (x∗ , y ∗ ) + f2 (x∗ , y ∗ ) + u(x∗ ) = β ∗ ,

k→+∞

       & '      (M ))     !  !    " (M ))    #                         !  

  $    #   %  #    &'(    !     !)     #  *                                   #             H,   +  qi       Ji     i = 1, . . . , s,    ,      f (q, H, J) := b1 Li (KLi /Ji )β/α (qi /c)βλ/α + b2 |a1 |e1 H e2 + b3 |a1 |H i

      % % q − i∈out(k) qi = ak k = 1, . . . , n + #  %i∈in(k) i ±Ji = 0 p = 1, . . . , m     #  %i∈loop p min ±J p = 1, . . . , m     .  i ≤ H + h1 − hk i∈r(k) qimax ≥ qi ≥ qimin ≥ 0 i = 1, . . . , s H max ≥ H ≥ H min ≥ 0 KLi (qi /c)λ /dα max ≤ Ji Ji ≤ KLi (qi /c)λ /dα min

# 

i = 1, . . . , s  ,)/

  .  

Li       i, K  c     ,)/

   0 −a1               b1 , b2 , b3 , e1 , e2 , β        0 < e1 , e2 < 1  1 < β < 2.5, λ = 1.85  α = 4.87). *          #1   f (q, H, J)     #    !  J  ! (q, H),        KLi (qi /c)λ ,       q      !)             M = M {(q, H)| q M ≤ q ≤ q M , H M ≤ H ≤ H }   23

f (q M , H M , J) ≤ f (q, H, J) KLi (q M /c)λ i

≤ KLi (qi /c) ≤ λ

λ KLi (q M i /c) ,

i = 1, . . . , s

24



 

 

(q, H) ∈ M.

     

      

   

(q, H, J)  (q, H) ∈ M

              

 

KLi (q M /c)λ  i !!"α#               (q, H)         

    

  

KLi (qi /c)λ   M KLi (q i /c)λ   

     

   

  

     

  "$%#"$&#      

         !       '          



                    

        

    

 

                

           

         



 (' )*+   

                , )&&+          

     

      -        

  

                      

  

     

 .    )&/+                 0                )&/+           1              "2#    !    )&+               

            

3     "           #      )&+         "  "21##        "    

c(x), aij (x), 

     

#                 



      )&4+                      5    

   

   

         )&$+       )&$+                      )6%+                   

  



min{F (x, y)| Gi (x, y) ≤ 0 (i = 1, . . . , m), x ∈ C, y ∈ D} 

D→

C, D

Ê



    

Ên, Êp,

 

(GP ) F, Gi : C ×

               

       



          x ∈ C        y,                                                                    !"#$ F (x, y), Gi (x, y)        

 x         

m 



inf sup{F (x , y) +

y∈D λ≥0

i=1





λi Gi (x , y)} = sup inf {F (x , y) + λ≥0 y∈D

m 

λi Gi (x∗ , y)},

i=1

 D         D.                                             !%&# '        Ì       C       D    F (x, y), Gi (x, y), i = 1, . . . , m,                  x∗ ∈ C    

W   x∗       D ⊂ D    inf{F (x, y)| G(x, y) ≤ 0, x ∈ W ∩ C, y ∈ D}

= inf{F (x, y)| G(x, y) ≤ 0, x ∈ W ∩ C, y ∈ D}. !(# inf sup{F (x∗ , y) + !λ, G(x∗ , y) } = sup inf {F (x∗ , y) + !λ, G(x∗ , y) }.!((#

y∈D λ≥0

λ≥0 y∈D

   !!α      (        "    #         

      "          #  $ 

    Mk , ν = 1, 2, . . . ,

     x∗ ∈ C        ν

min{F (x∗ , y)| G(x∗ , y) ≤ 0, y ∈ D}

 

     

  y∗ ∈ D   ((     

  (x∗ , y ∗ )   " ) *+,    !%&#               !  -  ..#      /  -   %..!α#    '         β(M ) 

    M    %..!α#  !(#    ..     β(M ) = sup inf{F (x, y) + !λ, G(x, y) | x ∈ M, y ∈ D}. λ≥0

0          ..       !#  !#                  -  ..     1         Q(M ) := M ∩ C   



 

   M        M   M ∩ C = ∅.       

  β(M ) =

sup inf{F (x, y) + !λ, G(x, y) | x ∈ M, y ∈ D}  M ∩ C = ∅ λ≥0

+∞

otherwise



     β(M )     

              

       M ∩ C  

         !" #           $    %               &   ''

    ''α"     %       "(  ") *(+          !          F, Gi      "  

    *(+            

            " ,          "( *(+

 -         

        "                      .    .         -        -                                 "" *)/+ *)(+" &       

                min{

n #

ci (y)| y ∈ D}

0

i=1

 D

   Êp , ci (y)      

  ci (y) > 0 ∀D. #B         0    *(+

      n i=1 xi − !λ, x    -              1 f (x) = x1 x2 − (x1 + x2 )

 -   Ê2+ ).              0         min{

n 

log xi | Cy − x ≤ c, Ay ≤ b, x ∈ [r, s], y ≥ 0}

i=1

       !2 

    "    3 )"   

     

     max{−!c, λ1 − !b, λ2 + t

%

!w, λ1 + t ≤ n log(wi ), ∀w ∈ W i=1

""

−C T λ1 − AT λ2 ≤ 0

(λ1 , λ2 ) ≥ 0

 W

       [r, s].

       





                   

                                           

                                                                                    

    !     "!    #

 

Ê Ê

 C, D       n , m     f (x, y) : C × D →               x,           y,        

Ê

       $% C   $%    y¯ ∈ D   f (x, y¯) → +∞  x ∈ D, x → +∞.  minx∈C supy∈D f (x, y) = supy∈D inf x∈C f (x, y),  C     j

C=

C {x ∈ C| f (x, y¯) ≤ γ}

" $%   " $%  .

 γ := inf x∈C supy∈D f (x, y).

 



Ê Ê

C, D       n , m     f (x, y) : C × D →               x,           y,        

Ê

       $% D   $%    x¯ ∈ C   f (¯x, y) → −∞  y ∈ D, y → +∞.  inf x∈C supy∈D f (x, y) = maxy∈D inf x∈C f (x, y),  D     j

D=

D {y ∈ D| f (¯ x, y) ≥ β}

" $%   " $%  .

 β := supy∈D inf x∈C f (x, y).

    

 ! "#   $%&              '   ()*++,-+).. . / 01 $ %0                '    2 ! +*.33-4.33



 

     

      

          ! " " #$%$  & '( %" )



  

*+ ,-,, , . #/$0  12 3 "

 0-%  &%$$  4

%$  $" 4 % 0  $$5#$ 0)

 

  

6*7+-86

 9 #   "" 0 

 &%$$  ": 4 "5  %$-

#  & $  %$ " %5)

    

 6*+

7  "   $ ;# "  #:

 # $<   $& %% &  " -

 $= $   4 &$  %" $ ") 6776  %%  8    #:

  !   " 



!   "  #     



  $$  >%$ "    #5$ '

     !   " 

 3#0 6777

7 1 > $ ; >$

 "5  %$$= $ %% &  0 

$$5#$ 0 %5) 7-6  ? > > > 

    " 

  !   " 

*+

$       %

  #' 1#  3$' 8 * #$ +

6  @  $

1# $: 2# A 4  B   C#  $& ;-

" $ " ;5 0$ C#  $& 9  $ )

&    

 @  $

    " 

7 *6777+ -,

. # $: 5#  $ % : & '( %" $ ")

  !   " 

66*6776+ 6-67

 @  $ 9 '" & %%$& $  4 1&%$$ A

 

D$ " 1# $: 2#  4  & '( B5  .%$$= $ )

  "  &    

*6776+ ,-

, 1 #  ; % $ E   $ 

 0 ! " "$ # 

"5  %$$= $ "$ 4 '$ " 5$$    $( $ F# $$)

    '     #:

 *6777+G

½¼ ,-,8

.  & '( .%$$= $ ;5 0$ >%    & -

  !   " (    !   " 

'( @ $ 5)   #:

6*6+ -  3#0 8

8  #:   > ;:5& A  $& .%$$= $ )

   



 >%$ " @ " 6*+ 6-77

  #:

A  $& %$$= $  ;5 #$ %% &)

67  #:

9# -( %  > #  19 .%$$= $ )

     "  ½½ 

*6777+ -

;%$   $# 4 A  $&  $ @$  6776 >#5$  6  #:  0 B   A$ $ ( ) ;%$   $# 4 A  $&  $ @$  677 >#5$  66  #: !  !#& &  $ )

 0 %% &  %$$= $ #    $&

  !   " 

 8*6777+ -,

           1     2  

  3      1 1 2 3

       

     

       

      

  

      

                           !"1−bit # "        $ $ $        %         !"# %        $       $   "   &             "   $  '   % ( &  )       $   $ (          $ %  (       $       &    "         %   $   $     (  "  $(  *        ' * $ (+    $   ( $    %  %     $ $            , % $    *          %     )   "1−bit             )   *     {2n | n = 1, 2, 3, ...} -  *         $    ( "1−bit % ./    0 $ ( % $(  ' * $ (+     %$  "1−bit    %$  "1−bit %   (+ ( n × n *  $ m × n      (  2n − 1 $ m + n + max(m, n)      (  $$ %     + $ (+               %$       ( %       $     (     ( &   )    ' %  $   $    %           $  !#    $     %         

 ( $     %     ) 1  "1−bit      

 ( $       

 

                       !    "     



         

                                                                                                           ! " # $%&

  

  '      $ ( ) % * ( " $ $(&  

     * + # ! $*&     ,                  -   .                / .          -    /                              .    -                   

         -                 .    

                    /                0        /          /1−bit  1             /            1         

                                  1     /                       -   /        $             

  /1−bit    -              -    /   /1−bit      *        

      /1−bit   -  -                    /1−bit      !   '                     '                     -                     $            -  2     -                   -   

 

       

 /                     * + $%&                     

   -     3          /         i  i ≥ 1 3  i    1         

        -              ,         ,                 4     -  3          ,                  .        1                 /    

         



    

      1−bit             A = (Q, δ, F )             δ                             δ Q × {0, 1} × {0, 1} → Q × {0, 1} × {0, 1}   δ(p, x, y) = (q, x , y  ) p q ∈ Q x, x , y, y  ∈ {0, 1}      !         i    p       x  y     



   "    #      $ i    q   x  y     

   "    %       i          i−1  i+1     &   q ∈ Q         δ(q, 0, 0) = (q, 0, 0) ' F (⊆ Q)       ( #           1      &     #  1−bit                        ) N                (         δ : Q3 → Q #       N                 #

                     *(1) +       (     &    3log2 |Q|4   &  &                 

   "                  (  1−bit         N  3log2 |Q|4  #       

            1−bit    N             T (n)        1−bit      N  kT (n)     k            k = 3log2 |Q|4       N   

        1−bit

%    &         1−bit  ) M   1−bit  {tn | n = 1, 2, 3, ...}               &            tn ≥ n   n ≥ 1 !             ,        1     &     -      

   "    t = 0 #

    1    

   Q      

   "    t = 0       &     !  M    &  {tn | n = 1, 2, 3...}  k               M   



          

       

 !      

 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0

P0

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

1

P1

A0

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

2

P2

A1

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

3

So

R

A0

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

4

dd

R

A1

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

5

So

B

R

A0

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

6

N0

U2

B

A1

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

7

So

U3

P

WV A0

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

8

N0

C

Z

WT

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

9

N1

Z

Z

WT A0

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

10

N0

C

Z

WT A1

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

11

So

Z

C

WT

R

A0

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

12

N0

Z

Z

WX

R

A1

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

13

So

Z

C

wx

R

R

A0

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

14

N0

C

Z

J0

R

R

A1

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

15

N1

Z

Z

J1

B

R

R

A0

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

16

N0

C

Z

WZ

S

C

R

A1

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

17

So

Z

C

WZ U0

Z

B

R

A0

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

18

N0

Z

Z

WC U1

C

P

B

A1

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

19

So

Z

C

WZ U2

Z

D1

S

WV A0

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

20

N0

C

Z

WZ U3

Z

D2

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

21

N1

Z

Z

WZ

C

Z

Z

Z

WT

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

22

N0

C

Z

WC

Z

Z

Z

Z

WT A0

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

23

So

Z

H0

WZ

C

Z

Z

Z

WT A1

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

24

N0

C

H1

WC

Z

C

Z

Z

WT

R

A0

Q

Q

Q

Q

Q

Q

Q

Q

Q

25

N1

H1

C

WZ

Z

Z

C

Z

WT

R

A1

Q

Q

Q

Q

Q

Q

Q

Q

Q

26

N0

C

Z

WZ

Z

Z

Z

C

WT

R

R

A0

Q

Q

Q

Q

Q

Q

Q

Q

27

N1

Z

Z

WZ

Z

Z

Z

Z

WX

R

R

A1

Q

Q

Q

Q

Q

Q

Q

Q

28

N0

C

Z

WZ

Z

Z

Z

C

wx

R

R

R

A0

Q

Q

Q

Q

Q

Q

Q

29

So

Z

C

WZ

Z

Z

C

Z

J0

R

R

R

A1

Q

Q

Q

Q

Q

Q

Q

30

N0

Z

Z

WC

Z

C

Z

Z

J1

B

R

R

R

A0

Q

Q

Q

Q

Q

Q

31

So

Z

C

WZ

C

Z

Z

Z

WZ

S

B

R

R

A1

Q

Q

Q

Q

Q

Q

32

N0

C

Z

WC

Z

Z

Z

Z

WZ D0

S

B

R

R

A0

Q

Q

Q

Q

Q

33

N1

Z

C

WZ

C

Z

Z

Z

WZ D1

S

S

C

R

A1

Q

Q

Q

Q

Q

34

N0

H0

Z

WZ

Z

C

Z

Z

WZ D2

S

C

Z

B

R

A0

Q

Q

Q

Q

35

N1

H1

C

WZ

Z

Z

C

Z

WZ

Z

U0

Z

Z

P

B

A1

Q

Q

Q

Q

36

N0

Z

Z

WC

Z

Z

Z

C

WZ

Z

U1

C

Z

P

S

WV A0

Q

Q

Q

37

So

Z

C

WZ

Z

Z

Z

Z

WC

Z

U2

Z

C

P

C

WY

Q

Q

Q

Q

38

N0

C

Z

WZ

Z

Z

Z

C

WZ

Z

U3

Z

Z

C

Z

WY

Q

Q

Q

Q

39

N1

Z

Z

WZ

Z

Z

C

Z

WZ

Z

C

Z

Z

Z

C

WY

Q

Q

Q

Q

40

N0

C

Z

WZ

Z

C

Z

Z

WZ

C

Z

Z

Z

Z

Z

WT

Q

Q

Q

Q

U0 WY

  " #  $     $ %   &"1−bit   '(  )    $   #  ! $  *  "'+  % ,'      F (⊆ Q)                      t = ktn    k         M       k = 1

         



                                 1−bit      

                            !"   1−bit  Ì   [19]     1−bit    {n2| n = 1, 2, 3, ...}       [19]      1−bit    

         [20]              1−bit        1−bit       1−bit  #      

                 1−bit  

        ${2n| n = 1, 2, 3, ...}  !           1−bit      {2n | n = 1, 2, 3, ...}        1      a  i %i ≥ 2&  '   q   

Current state

Input from right link

Input from left link

(next state, left output, right output)

1

2

a

R =0

R= 1

q

R =0

R= 1

L =0

(a,0,0)

(a,1,0)

L =0

(q,0,0)

(q,1,1)

L =1

--

--

L =1

(q,1,1)

(q,0,0)

              {2n | n = 1, 2, 3, ...}   

1−bit 

  "                     (      '          )                  

                    {2n| n = 1, 2, 3, ...}           1−bit         1−bit

          )      *                     )    

     *                 

      + ,    *        





          1

2

3

4

5

6

7

0

a

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

1

a

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

2

a

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

3

a

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

4

a

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

5

a

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

6

a

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

7

a

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

8

a

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

9

a

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

10

a

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

11

a

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

12

a

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

13

a

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

14

a

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

15

a

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

16

a

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

17

a

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

18

a

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

19

a

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

20

a

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

21

a

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

22

a

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

23

a

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

24

a

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

25

a

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

26

a

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

27

a

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

28

a

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

29

a

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

30

a

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

31

a

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

32

a

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

33

a

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

 

1−bit 

8

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

       {2n | n = 1, 2, 3, ...}   

                   ! " # " $ " %      & "' " "  "   ()  * +   +"    & m × n  )   (i, j)    (i,j ,       -    .         /"      +     &    -  "  .      +        &      +  )              +       &     + &              &  0   & m× n           (1,1  +       t = 0 + +      -   " & . &               +                   &     & m  n   /

          1

2

3

4

n

1

C11

C12

C13

C14

C1n

2

C21

C22

C23

C24

C2n

m

Cm1

Cm2

Cm3

Cm4

Cmn



                                            m  n                         !"#    !$#  %&!'  

  

  (             )*1−bit             ! )*1−bit                    +     ,  !-#                 

 )*1−bit   2n − 2         n   !             .         +,         /

Ì   [13]    1−bit       n  

         2n − 2   1−bit                . $           . "

   [22]    1−bit      

n     k         1 ≤ k ≤ n           k           

             1−bit            

n+(k, n − k + 1)

          0              (2n − 1)   n × n    %           

!"#  %&!'  

           (           n 1   !        i 1 2n − 2i + 1 (1 ≤ i ≤ n)        n   !             %  i 1     Ci,i    t = 2i − 1         



          step 0

step 1

1

2

3

4

5

6

7

8

1

1

PWLT

Q

Q

Q

Q

Q

Q

QW

1

2

Q

Q

Q

Q

Q

Q

Q

QW

3

Q

Q

Q

Q

Q

Q

Q

QW

4

Q

Q

Q

Q

Q

Q

Q

5

Q

Q

Q

Q

Q

Q

Q

step 3

step 2 2

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

PWLT

AR’

xPWLT

Q

Q

Q

Q

QW

1

PWLT

BR01

AR’

xPWLT

Q

Q

Q

QW

2

aR’

xPWLT

Q

Q

Q

Q

Q

QW

2

bR01

PWLT xPWLT

Q

Q

Q

Q

QW

3

xPWLT

Q

Q

Q

Q

Q

Q

QW

3

aR’

xPWLT

Q

Q

Q

Q

Q

QW

QW

4

Q

Q

Q

Q

Q

Q

Q

QW

4

xPWLT

Q

Q

Q

Q

Q

Q

QW

QW

5

Q

Q

Q

Q

Q

Q

Q

QW

5

Q

Q

Q

Q

Q

Q

Q

QW

Q

Q

Q

Q

Q

Q

Q

QW

3

4

5

6

7

8

PWLT xPWLT

Q

Q

Q

Q

Q

QW

1

2

xPWLT

Q

Q

Q

Q

Q

Q

QW

3

Q

Q

Q

Q

Q

Q

Q

QW

QW

4

Q

Q

Q

Q

Q

Q

Q

QW

5

Q

Q

Q

Q

Q

Q

Q

6

Q

Q

Q

Q

Q

Q

Q

QW

6

Q

Q

Q

Q

Q

Q

Q

QW

6

Q

Q

Q

Q

Q

Q

Q

QW

6

7

Q

Q

Q

Q

Q

Q

Q

QW

7

Q

Q

Q

Q

Q

Q

Q

QW

7

Q

Q

Q

Q

Q

Q

Q

QW

7

Q

Q

Q

Q

Q

Q

Q

QW

8

QW

QW

QW

QW

QW

QW

QW

QW

8

QW

QW

QW

QW

QW

QW

QW

QW

8

QW

QW

QW

QW

QW

QW

QW

QW

8

QW

QW

QW

QW

QW

QW

QW

QW

step 5

step 4 1

2

3

1

PWLT

BR00

2

bR00

3

subV

4

aR’

5

4

5

6

7

AR’

xPWLT

Q

Q

QW

PWLT

AR’

xPWLT

Q

Q

Q

QW

aR’

xPWLT

Q

Q

Q

Q

QW

xPWLT

Q

Q

Q

Q

Q

QW

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

QW

7

Q

Q

Q

Q

Q

Q

Q

QW

8

QW

QW

QW

QW

QW

QW

QW

QW

2

3

4

5

6

7

8

PWLT

BR0u0

BR1S

QRD

QRC

QRB

subH

PWRB

bR0u0

PWLT

QR0S

BR11

QRB

subH

AR’

xPWRB

3

bR1S

QR0S

PWLT

BR00

subH

AR’

xPWLT

QW

QRD

bR11

bR00

PWLT

AR’

xPWLT

Q

QW

5

QRC

QRB

subV

aR’

xPWLT

Q

Q

QW

7

8

QRB

subV

aR’

Q

QW

subV

aR’

xPWLT

Q

Q

Q

Q

QW

QW

QW

QW

QW

QW

QW

PWRB xPWRB

xPWLT

Q

4

5

6

7

8

BR10

QRC

odd

subH

AR’

xPWRB

QW

2

bR0u1

PWLT

BR0S

odd

subH

AR’

xPWLT

QW

QW

3

bR10

bR0S

PWLT

BR01

AR’

xPWLT

Q

QW

Q

QW

4

QRC

odd

bR01

PWLT xPWLT

Q

Q

QW

Q

QW

5

odd

subV

aR’

xPWLT

Q

Q

Q

QW

Q

Q

QW

6

subV

aR’

xPWLT

Q

Q

Q

Q

QW

Q

Q

Q

QW

7

aR’

xPWLT

Q

Q

Q

Q

Q

QW

QW

QW

QW

QW

QW

8

xPWRB

QW

QW

QW

QW

QW

QW

QW

4

5

6

7

8

1

2

3

4

5

6

7

8

odd

subH

AR’

xPWLT

Q

QW

1

PWLT

QR0S

BR11

QRB

subH

AR’

xPWLT

QW

2

bR0S

PWLT

BR01

AR’

xPWLT

Q

Q

QW

2

QR0S

PWLT

BR00

subH

AR’

xPWLT

Q

3

odd

bR01

PWLT xPWLT

Q

Q

Q

QW

3

bR11

bR00

PWLT

AR’

xPWLT

Q

Q

4

subV

aR’

xPWLT

Q

Q

Q

Q

QW

4

QRB

subV

aR’

xPWLT

Q

Q

5

aR’

xPWLT

Q

Q

Q

Q

Q

QW

5

subV

aR’

xPWLT

Q

Q

Q

6

xPWLT

Q

Q

Q

Q

Q

Q

QW

6

aR’

xPWLT

Q

Q

Q

7

Q

Q

Q

Q

Q

Q

Q

QW

7

xPWLT

Q

Q

Q

8

QW

QW

QW

QW

QW

QW

QW

QW

8

QW

QW

QW

step 9

1

4

6

3

BR0u1

3

BR0S

step 8

2

2

PWLT

2

PWLT

QW

6

1

1

1

1

1

8

subH

xPWLT

step 7

step 6

Q

step 12

2

3

4

5

6

7

8

1

PWLT

BR0uS

QR10

BR01

QRD

QRC

AL1

PWRB

2

bR0uS

PWLT

BR0u1

BR10

QRC

odd

subH

PWRB

3

QR10

bR0u1

PWLT

BR0S

odd

subH

AR’

xPWRB

4

bR01

bR10

bR0S

PWLT

BR01

AR’

xPWLT

QW

5

QRD

QRC

odd

bR01

PWLT xPWLT

Q

QW

6

QRC

odd

subV

aR’

xPWLT

Q

QW

subV

aR’

xPWLT

Q

Q

Q

QW

QW

QW

QW

QW

QW

7

AL1

8

PWRB

PWRB xPWRB

Q

2

3

4

5

6

7

8

1

PWLT

BR0v0

RL1

P1d

PA

QLB

BL00

PWRB

2

bR0v0

PWLT

BR0v0

QR11

P1s

QLA

BL00

3

RL1

bR0v0

PWLT

BR0u0

BR1S

AL

QLA

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

PWLT

BR0v0

QR11

BR00

QRA

AL

QLA

PWRB

1

PWLT

BR0v1

QR10

BR0S

AL

QLA

BL01

PWRB

2

bR0v0

PWLT

BR0u0

BR1S

QRD

QRC

AL0

PWRB

2

bR0v1

PWLT

BR0uS

QR10

BR01

AL

BL01

PWRB

3

QR11

bR0u0

PWLT

QR0S

BR11

QRB

subH

PWRB

3

QR10

bR0uS

PWLT

BR0u1

BR10

QRC

AL1

PWRB

4

bR00

bR1S

QR0S

PWLT

BR00

subH

AR’

xPWRB

4

bR0S

QR10

bR0u1

PWLT

BR0S

odd

subH

PWRB

5

QRA

QRD

bR11

bR00

PWLT

AR’

xPWLT

QW

5

AL

bR01

bR10

bR0S

PWLT

BR01

AR’

xPWRB

QRB

subV

aR’

xPWLT

Q

QW

6

odd

bR01

subV

aR’

xPWLT

Q

Q

QW

7

bL01

bL01

AL1

subV

aR’

QW

QW

QW

QW

8

PWRB

PWRB

PWRB

6

step 13

1

step 11

step 10

1

AL

QRC

7

QLA

AL0

8

PWRB

PWRB

PWRB xPWRB

2

3

4

5

6

7

8

1

PWLT

BR0vS

AL

P1

P1

AR

BL0S

PWRB

1

PWRB

2

bR0vS

PWLT

BR0v1

AL

P1

AR

BL0S

PWRB

PWRB

3

AL

bR0v1

PWLT

BR0uS

P0d

PA

BL01

PWRB

1

2

3

4

5

6

7

8

PWLT

P1

PA

P1

P1

PA

P1

PWRB

2

p1

PWLT

P1

PA

P1

PA

P1

PWRB

3

pA

p1

PWLT

P0

P0

P0

P0

PWRB

4

p1d

QR11

bR0u0

PWLT

QR0S

BR11

AL0

PWRB

4

p1

AL

bR0uS

PWLT

BR0u1

P0s

BL01

PWRB

4

p1

pA

p0

PWLT

P0

P0

P0

PWRB

5

pA

p1s

bR1S

QR0S

PWLT

BR00

subH

PWRB

5

p1

p1

p0d

bR0u1

PWLT

BR0S

AL1

PWRB

5

p1

p1

p0

p0

PWLT

P1

P1

PWRB

6

QLB

QLA

AL

bR11

bR00

PWLT

AR’

xPWRB

6

AR

AR

pA

p0s

bR0S

PWLT

BR01

PWRB

6

pA

pA

p0

p0

p1

PWLT

P0

PWRB

7

8

bL00

PWRB

bL00

PWRB

QLA

PWRB

AL0

PWRB

subV

aR’

PWRB xPWRB

xPWLT

QW

QW

QW

7

8

bL0S

PWRB

bL0S

PWRB

bL01

PWRB

bL01

AL1

PWRB PWRB

bR01

PWLT xPWRB

PWRB xPWRB

QW

7

8

p1

PWRB

p1

PWRB

AL

QRC

PWRB xPWRB

PWLT xPWLT

QW

xPWLT

Q

QW

QW

QW

QW

step 15

step 14

1

QLA

p0

PWRB

p0

PWRB

p1

PWRB

p0

PWRB

PWLT

1

2

3

4

5

6

7

8

1

T

T

T

T

T

T

T

T

2

T

T

T

T

T

T

T

T

3

T

T

T

T

T

T

T

T

4

T

T

T

T

T

T

T

T

5

T

T

T

T

T

T

T

T

6

T

T

T

T

T

T

T

T

7

T

T

T

T

T

T

T

T

8

T

T

T

T

T

T

T

T

PWRB

PWRB xPWRB

     (2n−1)     !  "  #     #      $ # %       &   '  ()*   *+                                               t = 2i − 1 + 2(n − i + 1) − 2 = 2n − 1               !   " 2 × 2  1000 × 1000    #              $%1−bit  "     &'  ()*    +  ,      

        &'-    "      !   " 8 × 8    .

Ì      1−bit    n × n   2n − 1 

          step 0

step 1

1

2

3

4

5

6

7

8

1

xJ

Q

Q

Q

Q

Q

Q

CQX

2

Q

Q

Q

Q

Q

Q

Q

3

Q

Q

Q

Q

Q

Q

Q

4

Q

Q

Q

Q

Q

Q

5

CQX

VQX

VQX

VQX

VQX

VQX

2

3

4

5

6

7

8

1

JP

xH

Q

Q

Q

Q

Q

CQX

HQX

2

xV

Q

Q

Q

Q

Q

Q

HQX

3

Q

Q

Q

Q

Q

Q

Q

Q

HQX

4

Q

Q

Q

Q

Q

Q

VQX

JQX

5

CQX

VQX

VQX

VQX

VQX

VQX

step 4

step 3

step 2

1

1

2

3

4

5

6

7

8

1

JD1

HS

xH

Q

Q

Q

Q

CQX

HQX

2

VL

xJ2

Q

Q

Q

Q

Q

HQX

HQX

3

xV

Q

Q

Q

Q

Q

Q

HQX

Q

HQX

4

Q

Q

Q

Q

Q

Q

Q

HQX

VQX

JQX

5

CQX

VQX

VQX

VQX

VQX

VQX

VQX

JQX

HQX

Q

HQX

Q

HQX

4

VAR1

VQLS

xV

xJ2

xJ2

Q

Q

HQX

VQX

JQX

5

VKX

VKXs

VQX

VQX

VQX

JQX

HQX

2

VQL1

JD1

HS

xH

xJ2

Q

Q

HQX

2

VQL2

JD2

HQRS

HS

xH

xJ2

Q

Q

HQX

3

VQL2

VL

xJ2

xJ2

Q

Q

Q

HQX

3

VQL1

VQLS

xJ

xJ2

xJ2

Q

Q

4

VL

xJ2

Q

Q

Q

Q

Q

HQX

4

VQLS

xV

xJ2

Q

Q

Q

Q

HQX

4

VIX

VL

xJ2

xJ2

Q

Q

5

xCQX

VQX

VQX

VQX

VQX

VQX

VQX

JQX

5

VKXs

xVQX1

VQX

VQX

VQX

VQX

VQX

JQX

5

VKX

xCQX

xVQX1

VQX

VQX

VQX

step 10

HQR2

7

8

HKX

JD1

HQR2

1

xVQX1 xVQX1

step 11

1

2

3

4

5

6

7

8

JFXB

HW

HQR1

HQR2

HQR1

HG0

HAL1

HKX

HQR2

1

1

2

3

4

5

6

7

8

JBr2

HFW

HW

HQR1

HG0

HQLA

HAL2

HKX

HGX

2

VI0

JD2

HQR1

HQRS

HS

xH

xHQX1

2

V
HQR2

HQR1

HQRS

HS

xCQX

V
JX

HQR1

HQR2

HQR1

HQRS

HKXs

2

VQRe2

JFXA

HW

HQR1

HQR2

HQR1

3

VQRA

VQL1

JD1

HS

xH

xJ2

xJ2

HQX

3

VQRB

VI0

JD2

HQRS

HS

xH

xJ2

xHQX1

3

VsBRA

V
JD1

HQR2

HQRS

HS

xH

xHQX1

3

VSBRA

V
JX

HQR1

HQR2

HQRS

HS

xCQX

4

VAR2

VIX

VL

xJ2

xJ2

xJ2

Q

HQX

4

VAR3

VAR1

VQLS

xJ

xJ2

xJ2

xJ2

HQX

4

VQRE0 VAR2

VIX

JP

xH

xJ2

xJ2

xHQX1

4

JD1

HS

xH

xJ2

xHQX1

5

VKX

VKX

xCQX

xVQX1 xVQX1

VQX

VQX

JQX

5

VKX

VKX

VKXs

VQX

JQX

5

VKX

xCQX

JQX

5

step 13

step 12

1

xVQX1 xVQX1 xVQX1

1

2

3

4

5

6

7

8

JBr3

HQRd

HFW

HGW

HQLA

HQLB

HAL3

HKX

1

2

JQX

xJ2

Q

Q

HGX

VQX

xH

Q

Q

6

VQX

xJ2

Q

Q

HQR1

VQX

HS

xJ2

xJ2

5

VQX

xJ2

xH

xV

HQR2

VQX

xH

JP

VQLS

4

VQX

HQRS

VQL2

3

HQR1

CQX

JP

2

3

HQX

5

HQR2

CQX

HQR2

Q

JD1

xH

2

Q

VQL2

8

HS

HQR1

Q

VI0

7

HQRS

1

Q

VQL1

6

HQR2

JX

Q

2

5

HQR1

1

Q

3

4

HQR2

8

xV

HQX

3

JD1

HKXs

HQX

4

HQX

2

1

7

HQX

Q

8

1

CQX

HQRS

Q

Q

xCQX

8

Q

6

Q

Q

7

7

xH

HQR2

Q

Q

HS

6

HS

5

Q

Q

6

5

HQRS

HQR1

xJ2

xJ2

HQRS

4

HQR2

4

xJ

VL

5

3

HQR1

HQR2

VQLS

3

HQR2

2

JD2

3

2

4

1

1

HQR1

CQX

HQR1

8

CQX

2

8

Q

3

7

Q

HQR2

7

Q

HQR2

6

Q

1

6

Q

2

5

xH

JD1

5

xH

HQR1

4

HS

1

4

HS

1

3

HQRS

step 9

3

HQRS

JD2

2

HQR2

step 8

2

JD2

1

1

JD1

1

1

1

step 7

step 6

step 5

VKX

VKX

xVQX1 xVQX1 xVQX1

2

3

4

5

6

7

8

JQRo1

HAr1

HQRd

HFGW

HB>

HBL1

HQLE0

HKX

1

VARA VsARD VsARA

VKX

VKX

VKX

VKXs

xVQX1 xVQX1 xVQX1

HKX

JQX

step 15

step 14

1

1

2

3

4

5

6

7

8

1

2

JQRo2

HAr2

HQRa

HG

HFB>

HfBL1

HALA

HKX

1

JQRo1

HAr3

VQRe2 JQRe2

4

5

HG

HQLa

HQLb

HFBL1 HfALA

HKX

HBr2

3

HQRc

HG

HFB>

6

HfAL3

7

HKX

8

HKX

VQRe1

JAr2

HFW

HW

HQR1

HG0

HAL1

HKX

2

VRe

JAr3

HFW

HGW

HQLA

HAL2

HKX

2

HBr1

HQRb

HFGW

HB>

HKX

2

3

VBRa

VQRo2

JFXB

HW

HQR1

HQR2

HQRS

HKXs

3

VBRb

VQRo1

JBr2

HFW

HW

HQR1

HGX

HKX

3

VBRc

VRo

JBr3

HQRd

HFW

HGW

HAL1

HKX

3

VBRe

HAr1

HQRd

HFGW

HfAL1

4

VfARA VSARD VSARA

JX

HQRS

HS

xH

xHQX1

4

VARa

VARd

VARa

JFXA

HW

HQRS

HS

xCQX

4

VARb

VARe

VARb

JAr2

HFW

HW

HQRS

HKXs

4

VARa

VARf

VARc

JAr3

HQRb

HFW

HGXX

HKX

VKX

xH

JQX

5

VKX

VKX

VKX

VKX

HPX

xH

xVQX1

JQX

5

VKX

VKX

VKX

VKX

HfPX

HS

xH

JQX

5

VKX

VKX

VKX

VKX

HFPX

HtSX

HS

xJQX

2

5

VKX

VKX

VKX

xVQX1 xVQX1

step 16

1

HQRb

2

3

4

5

6

7

8

JRo

HK1d

HKA

HQLb

HQLc

HBl1

HFALA

HKX

1

HQLb

HFAL3

HG

VQRe0 JQRe1

HAL3

1

2

3

4

5

6

7

8

JG

HK1

HK1

HI

HQLd

HBl2

HALa

HKX

1

HKA

HQLb

VQRo0 JQRo1

step 19

step 18

step 17

1

1

2

3

4

5

6

7

8

JQLa

HK1

HK1

HQRa

HI

HBl3

HALb

HKX

1

1

2

3

4

5

6

7

8

JAl1

HK1

HK1

HAr1

HKA

HK0d

HALc

HKX

HAr1

HG

HQLa

HKX

2

VRe

JRe

HK0d

HAl3

HKX

2

HK0

HK0

HI

HBl1

HQLe0

HKX

2

HK0s

HALa

HKX

3

VBRd

VBRa

JQRo2

HAr2

HQRa

HFAL1

HKX

3

VBRe

VBRb

JQRo1

HAr3

HG

HQLa

HAl1

HKX

3

VBRf

VBRc

JRo

HK1d

HKA

HQLb

HAl2

HKX

3

VK0d

VK0s

JG

HK1

HK1

HI

HAl3

HKX

4

VARb

VQRe0

VARe

JQRe0

HBr1

HQRb HFGOX

HKX

4

VARa

VARa

VARd

JARa

HBr2

HQRc

HGOx

HKX

4

VARb

VARb

VARe

JARb

HBr3

HG

HQLa

HKX

4

VARc

VARa

VARf

JARc

HK0d

HKA

HAl1

HKX

5

VKX

VKX

VKX

VKX

HKX

HTSX

HKXs

5

VKX

VKX

VKX

VKX

HKX

HAr1

HTSX

HKX

5

VKX

VKX

VKX

VKX

HKX

HAr2

Hsubr

HKX

5

VKX

VKX

VKX

VKX

HKX

HAr3

HGOx

HKX

2

VQRe1 JQRe1

HBr3

HtSX

HQLc

VG



JG

VKA

JAl1

HK0

HK0

step 21

step 20 1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

JK0

HK1

HK1

HK0

HK0

HK0

HK0

HKX

1

T

T

T

T

T

T

T

T

2

VK0

JK0

HK0

HK0

HK0

HK0

HK0

HKX

2

T

T

T

T

T

T

T

T

3

VK0

VK0

JKA

HK1

HK1

HKA

HK1

HKX

3

T

T

T

T

T

T

T

T

4

VK0

VK0

VK1

JK0

HK0

HK0

HK0

HKX

4

T

T

T

T

T

T

T

T

5

VKX

VKX

VKX

VKX

HKX

HK1

HKA

HKX

5

T

T

T

T

T

T

T

T

                         !    "       #    $  %&   '      

      

                                                         (m, n)     !                    " #       $ % &!           5 × 8 



         

                       1−bit                    

Ì      1−bit    m × n 

   m + n+ (m, n)        

              !                        " r, s        1 ≤ r ≤ m 1 ≤ s ≤ n 

 t = 0     Cr,s                   #       $             %          &'($           $            $    )* +       $,    m×n -  mn    m+n−1   gk  1 ≤ k ≤ m + n − 1  .     / gk = {Ci,j |(i − 1) + (j − 1) = k − 1}.

  g1 = {C1,1 }, g2 = {C1,2 , C2,1 }, g3 = {C1,3 , C2,2 , C3,1 }, . . . , gm+n−1 = {Cm,n }.

" M    $   1−bit  .      T (, k)        k   k        1 ≤ k ≤  -   M  m+n−1   -     $ $         i    gi    i    Ci M   gi ↔ Ci    1 ≤ i ≤ m + n − 1 -      $, 1−bit N       gi     i    Ci   $    N  .   m × n      r,s   t = T (m + n − 1, r + s − 1)      M .    $,     m + n − 1     r+s−1   t = T (m + n − 1, r + s − 1) #     $,      )  *      $,           .   T (m, n, r, s)                            1−bit         011   000      ! 2           011$                    5 × 8     3,4    

         1−bit   

  m × n    T (m, n, r, s)   (r, s)          T (m, n, r, s)     T (m, n, r, s) = m + n − 2 + max(r + s, m + n − r − s + 2) ± O(1)

          step 0

step 1

step 3

step 2

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

QX

QXT

QXT

QXT

QXT

QXT

QXT

QXX

1

QX

QXT

QXT

QXT

QXT

QXT

QXT

QXX

1

QX

QXT

QXT

ctrl

QXT

QXT

QXT

QXX

1

QX

QXT

L

QLS

D2

QXT

QXT

QXX

2

QXL

Q

Q

Q

Q

Q

Q

QXR

2

QXL

Q

Q

ctrl

Q

Q

Q

QXR

2

QXL

Q

L

QLS

D2

Q

Q

QXR

2

QXL

L

QLS

QL2

D1

D2

Q

QXR

3

QXL

Q

Q

P

Q

Q

Q

QXR

3

QXL

Q

ctrl

D1

ctrl

Q

Q

QXR

3

QXL

ctrl

QLS

D2

QRS

ctrl

Q

QXR

3

ctrl

QLS

QL2

D1

QR2

QRS

ctrl

QXR

4

QXL

Q

Q

Q

Q

Q

Q

QXR

4

QXL

Q

Q

ctrl

Q

Q

Q

QXR

4

QXL

Q

D2

QRS

S

Q

Q

QXR

4

QXL

D2

D1

QR2

QRS

S

Q

QXR

QX

5

QXX

QXB

D2

QRS

S

QXB

QXB

QX

QXX

5

QXB

QXB

QXB

QXB

QXB

QXB

QX

step 4

QXB

QXB

QXB

QX

QXX

5

4

5

6

7

8

1

KXs

QLS

QL2

QL1

QL2

D1

D2

QXX

1

QXR

2

QLS

QL2

QL1

QL2

D1

QR2

QR1

D2

ctrl

3

QL2

QL1

QL2

D1

QR2

QR1

QR2

QRS

S

QXR

4

QL1

QL2

D1

QR2

QR1

QR2

QRS

QXB

QX

5

D2

D1

QR2

QR1

QR2

QRS

S

5

6

7

8

QX

L

QLS

QL2

QL1

D2

QXT

QXX

2

L

QLS

QL2

QL1

D2

QR1

D2

3

QLS

QL2

QL1

D2

QR1

QR2

QRS

4

D2

QL1

D2

QR1

QR2

QRS

5

QXX

D2

QR1

QR2

QRS

S

step 8 2

3

4

5

6

7

8

KX

AR2

QRA

I0

QL1

D2

QR1

QR2

2

AR2

QRA

I0

QL1

D2

QR1

QR2

QR1

3

QRA

I0

QL1

D2

QR1

QR2

QR1

G0

4

I0

QL1

D2

QR1

QR2

QR1

G0

AL1

D2

QR1

QR2

QR1

G0

AL1

1

3

QXB

QXB

step 7 3

4

5

6

7

8

1

2

3

4

5

6

7

8

KX

IX

QL1

QL2

QL1

D2

QR1

D2

1

KX

AR1

I0

QL1

QL2

D1

QR2

QR1

2

IX

QL1

QL2

QL1

D2

QR1

QR2

QR1

2

AR1

I0

QL1

QL2

D1

QR2

QR1

QR2

3

QL1

QL2

QL1

D2

QR1

QR2

QR1

QR2

3

I0

QL1

QL2

D1

QR2

QR1

QR2

QR1

S

4

QL2

QL1

D2

QR1

QR2

QR1

QR2

QRS

4

QL1

QL2

D1

QR2

QR1

QR2

QR1

GX

QX

5

QL1

D2

QR1

QR2

QR1

QR2

QRS

KXs

5

QL2

D1

QR2

QR1

QR2

QR1

GX

KX

step 10 2

3

4

5

6

7

8

KX

AR3

QRB

QRA

I0

D1

QR2

QR1

2

QRA

1

1

step 11

2

KX

3

QRE0 BR1

QRE0 BR1

4

5

6

7

8

QRB


X

QR1

G0

QRB

1

2

3

4

5

6

7

8

1

KX

ARA

BR2



FXA

GW

QLA

BR2

AR3

QRB

I0

D1

QR2

QR1

G0

2


X

QR1

G0

QLA

2

ARA



FXA

GW

QLA

3

QRB

QRA

I0

D1

QR2

QR1

G0

QLA

3

BR1

QRB


X

QR1

G0

QLA

QLB

3

BR2



FXA

GW

QLA

QLB

BL1

4

QRA

I0

D1

QR2

QR1

G0

QLA

AL2

4

QRB


X

QR1

G0

QLA

QLB

AL3

4



FXA

GW

QLA

QLB

BL1

QLE0

5

I0

D1

QR2

QR1

G0

QLA

AL2

KX

5


X

QR1

G0

QLA

QLB

AL3

KX

5


FXA

GW

QLA

QLB

BL1

QLE0

KX

3

4

step 13

2

1

step 14

2

QLB

7

8

1

2

3

4

5

6

7

8

G

FB>

1

KX

fARA

BRd

QRe1

Ro

K1d

KA

QLb

Ar3

G

FB>

D>

2

fARA

BRd

QRe1

Ro

K1d

KA

QLb

FD>

Ar3

G

FB>

D>

BL3

3

BRd

QRe1

Ro

K1d

KA

QLb

FD>

fBL3

Ar3

G

FB>

D>

BL3

ALB

4

QRe1

Ro

K1d

KA

QLb

FD>

fBL3

ALC

G

FB>

D>

BL3

ALB

KX

5

Ro

K1d

KA

QLb

FD>

fBL3

ALC

KX

5

6

7

8

QRo2

Ar2

FGW

B>

1


QRo2

Ar2

FGW

B>

QLC

2

QRo2

Ar2

FGW

B>

QLC

BL2

3

SBRD QRe2 QRo1

KX

ARA SBRD QRe2 QRo1

2

ARB sBRD

3

sBRD


4


QRo2

Ar2

FGW

B>

QLC

BL2

ALA

4

QRe2 QRo1

5

QRo2

Ar2

FGW

B>

QLC

BL2

ALA

KX

5

QRo1

step 16

5

ARA SBRD QRe2 QRo1

Ar3

step 17

step 18

1

2

3

4

5

6

7

8

1

KX

ARc

K0d

KA

Al1

K1

K1

Ar1

I

2

ARc

K0d

KA

Al1

K1

K1

Ar1

Bl3

3

K0d

KA

Al1

K1

K1

Ar1

KA

FALC

4

KA

Al1

K1

K1

Ar1

KA

K0d

KX

5

Al1

K1

K1

Ar1

KA

K0d

ALc

1

2

3

4

5

6

7

8

1

KX

ARb

BRf

G

QLa

K1

K1

QRa

2

ARb

BRf

G

QLa

K1

K1

QRa

3

BRf

G

QLa

K1

K1

QRa

I

4

G

QLa

K1

K1

QRa

I

Bl3

5

QLa

K1

K1

QRa

I

Bl3

FALC

step 15

6

Ar3

4


ARB sBRD

QXB

KX

step 12 KX

ctrl

2

1

1

QXB

1

step 9

1

1

QXB

step 6 3

4

1

QXB

2

3

QL1

QXB

1

2

5

QXB

step 5

1

1

QXX

5



1

2

3

4

5

6

7

1

KX

ARa

BRe

Re

G

K1

K1

I

2

ARa

BRe

Re

G

K1

K1

I

QLd

8

3

BRe

Re

G

K1

K1

I

QLd

FBL3

4

Re

G

K1

K1

I

QLd

FBL3

fALC

5

G

K1

K1

I

QLd

FBL3

fALC

KX

step 19

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

KX

K0

K0

K0

K0

K1

K1

K0

1

T

T

T

T

T

T

T

T

KA

2

K0

K0

K0

K0

K1

K1

K0

K0

2

T

T

T

T

T

T

T

T

K0d

3

K0

K0

K0

K1

K1

K0

K0

K0

3

T

T

T

T

T

T

T

T

ALc

4

K0

K0

K1

K1

K0

K0

K0

K0

4

T

T

T

T

T

T

T

T

KX

5

K0

K1

K1

K0

K0

K0

K0

KX

5

T

T

T

T

T

T

T

T

                        5 × 8     3,4 !    "       #    $  %   &                   m × n   m + n+(m, n)− (r, m − r + 1)−(s, n − s + 1) − 1      !    "         #  $ "$  # %   & %        

     1−bit '  !     # #  ()1−bit  (    () ! %  !  !  !   &!   # ! %    * #   "   !  +     %!, %      



         

                               !"#                 $   %& '#    (      )    * +#            ,!      -    !.      /01−bit      1,!

        /01−bit  2 n 3   4        !.    

           ! " !  #$1−bit  %  &     '  ! "  (  $)   *+

Ì        1−bit                0 5        $ 5 2                                  ,!           3                       6      /01−bit  3              5           !  /01−bit  -        2        /01−bit           7                    ,!      -               2         "8               0 !.      /01−bit            

         





                                 



  

!"#$ % &'($ )#$  !&*!++$ *! 

, - . /  #      0     10   

/  

    

$  2*+! $  ,,',

3 4 5 .6   7      0        0     '  

 

$  +*#3 $ ,33

' 8 ( 9 :               

   

$ %$ ,$ )3$  3##3*'$ *+& 

& ; :      0     10   < 0       ,*#$ 4   = $ *+, $  &,&* +  4 > $ 4 ?   $    $ 7 @$  4 =      10    /    0              

 !!

  

,223 $ 232#

! A 5 -            0 

    "   # " $%& '    ' " 0     

$

$ ,*&$  3&#3+!$ **! 

# 7 B   ; 5   &  0            0   

 

$ %&$ ),$ 

!3!*$ *#  * 7 B   ; 5   0       



   0   

 

$ %!$ )$  ##!$

*#'  2   /  C      0     10     /  

  ' "

$  &2*#! $ 

#3,3#    /   0      10    /  

  ' "

$  +#**+ $  3+!'2'

, ; 9  7   10    /   

) " 

"('

; 9   $  @$ -  

$ *+' $  ,3,' 3  )0 $ 7 D   4 =  <  07 9  D10 

D  /   

. (0  0 

   *  " '  +      

$  3#3#+$ ,223 

' 8 - $  - 9>$   4 A     ) >    0           

  '-

, 

- ( -   $ *!, $   8$ ) ?>$

,*,+& & A D  7        10    /  

    

$  ,'*!' $  +3#2



        

 

  

   

   !  

      

 

n   





      

          ! 

   

" # $%$&'("  )*+)'*

,  - 

" . /   . 0   1

       

 

             





   

" )2 %'***(  +2$+2

&  3  -        !    

  

  #   !    

  

   

"

',"  +&,+$$" %'**( $ 

3 

 

/

4 

1

 



 

  

                 !    

   



 

    

"

+' %'**'( '++',+ '*  3    / 4  1     

 !   

              

  ! !    

  

  

" 3 #  4  "%'**'(" ),')&'

'  3 " . .    / 56   1 7      

!                   

                       

 

" -/8 '2$)"   

9 " $&%'***( ''  3 " .  " 4 .  " 4 /     .   .                    

    

  ! "          

 

%8  8 " .

: ;   5 0  < (" '**'" ','& ') = 9  >      !        

 #



" 9)" /2"  '$))**" %$,&(

'2 = 9  1  ?      ! "  $'"   " %$,$( '+ 1 @   1                ! 

   

" # $%$("  ,&

                           

          !"#$%      &  '

     



( )*   +*  * *  )  * * +   ,  "

  - *. / +*   *    +      0) * +*   0   * *  +     ) )  *))   ,    *+  *

     * ' )**. / 0    ) 1 * * *) '  0       + ' )*   

 * *  )*  ) )* +* * - ' *    2*" +3 *    - *.  +* * *  * *  *   *  )*     .

    *  -   * )**  )) 

+*   *  )) )' ' ++*+     0  .  )  4 +       * *   *.

 

                                                                  !      "   # $

 "             

                                

             %         

                                       $   &                

                !  $   '       "               !        $    

       !   "                    !     



 

                                                                                                   !    "                  #                  #               

                

   $       

                       $                

      

      %   & 

            

                    ' () *+, 

                   ' -   *. /, $                   !   ' () *+,"                 !     ' -   *.," $                  &      

                 $                      $                       $                        #            !  "           a(u, q)(ϕ) = f (ϕ)

∀ϕ ∈ V.

!0"

1  q ∈ Q = Rnp         u ∈ g(q) + V    ˆ      2             g : Q → V ˆ  V  V       1     V ⊂ Vˆ  $   a(·, ·)(·)     1    Vˆ × Q × V  3                                   $      

   a(·, ·)(·)     au (·, ·)(·, ·) aq (·, ·)(·, ·)                C : Vˆ → Z          u        Z = Rnm 

 nm ≥ np  #    !·, · Z      Z   ·Z        3                    Q $               C¯ ∈ Z         4          

           



   



? 1? ?C(u) − C¯ ?2 Z 2



                       

    

  

Rm (u) := C¯ − C(u).



                      Th           Vh ⊂ V  Vˆh ⊂ Vˆ  Vh ⊂ Vˆh         !            uh ∈ gh (qh ) + Vh     qh ∈ Q      



? 1? ?C(uh ) − C¯ ?2 Z 2

"

     a(uh , qh )(ϕh ) = f (ϕh )

∀ϕh ∈ Vh ,

#

  gh : Q → Vˆh    $       g    $ gh = ih ◦ g            ih : Vˆ → Vˆh    %   &'(        )        E : Vˆ × Q → R         )  E(u, q)    *  )  

        E(u, q) − E(uh , qh ) = ηh + R,

+

  ηh                R          

    ,      !   " -    

          ηh  .      )          !              

                  )    T OL            E 

/   

    )            0 )      )                    $                       

0          ηh 

  -        

   )    $    1     )            )     

   )                          

 -   $                          



 

             Th0   k = 0           Vhk     uhk ∈ Vhk , qhk ∈ Q                   ηhk   ηhk ≤ T OL !

" # Thk → Thk+1        ηhk $   k    

%            &  &      '   &         (     )                     (   &      *   '   &                    E(u, q)  

            &                  *  

          & %            &  &     +   &                              )     (     *     &     

           ,    &           )             !    - &  

  )   a(·, ·)(·)        g(·)       C(·)        .    %   &          au (·, ·)(·, ·)/ ˆ × Q     (u, q)      B(u, q) ⊂ V          au (·, ·)(·, ·)           γ > 0  

 

au (v, p)(w, w) ≥ γ wV 2

∀(v, p) ∈ B(u, q),

∀w ∈ V.

$

0         1    0  2 3 4         *        .  

              

S

Q0 ⊂ Q S(q) ∈ g(q) + V

           

        

q ∈ Q0

 

a(S(q), q)(ϕ) = f (ϕ) ∀ϕ ∈ V.    

c : Q0 → Z

  

S

   

 

          

  !

c(q) := C(S(q))

                    "    #" % 

J = c (q)

   '  



? 1? ?c(q) − C¯ ?2 . Z 2

$

  &            

c

  $   

¯ J ∗ c(q) = J ∗ C.



(           &  

J

           c     !               ∂ci (q) = Jij = Ci (u)(wj ), ∂qj

i = 1 . . . nm , j = 1 . . . np ,



  u = S(q) Ci  ci                      Jij              J = c (q)  wj ∈ gq (q) + V            

    j

au (u, q)(wj , ϕ) = −aqj (u, q)(1, ϕ)

!

∀ϕ ∈ V.

)

*                    



+       

        

         J c

'    

            " np             



 

 

  

             K

                                 Ω=



K.

       ∂Ω                                     T 

       h             h| = h  h       K         

       ∂K   K       T                           !  "#$ %         

            &                '    

          V         !  "#$ '                                                         (       !  ) ' "*$ (       V       (u , q ) ∈ V × Q              +,-.           /              0         S     Q ⊂ Q           

   q ∈ Q  S (q) ∈ g (q) + V  a(S (q), q)(ϕ ) = f (ϕ ) ∀ϕ ∈ V . +/,.         +,-.       1   21 12 ??c (q ) − C¯?? . +/-.     J = c (q )  3                            +/-.   ¯ J c (q ) = J C. +/*.        (u , q )                     +-.         +/*. h

K

K

K

h

h

h

h

h

h

h

0,h

0,h

h

h

h

h

h

h

h

h

 h

h

h

∗ h h

h

h

h

∗ h

h

2 Z

           



    Jh           ch                            Th      ! qh0      

                       qhk+1 = qhk + δqh , "  δqh          (Jh∗ Jh )δqh = Jh∗ (C¯ − ch (qhk )). #    $%&'                      ( 

? 1? ?ch (qhk ) + Jh δqh − C¯ ?2 . 2

)

  *      +     &  ,         +   -)+ .+ /0     

*                   ,      +    &     E(u, q) 1 +         E(u, q) − E(uh , qh ) = ηh + R, /.  ηh             R     +                           +    2   *                    E(u, q) − E(uh, qh ) = E(u, q) − E(S(qh ), qh ) + E(S(qh ), qh ) − E(uh , qh ). / 1     u! = S(qh ) ∈ g(qh ) + V        ,      qh +  a(! u, qh )(ϕ) = f (ϕ) ∀ϕ ∈ V. // (+          + E (1) : Q → R  E (2) : Vˆ → R  E (1) (r) = E(S(r), r) /3 



 

E (2) (v) = E(v, qh ),



            

E(u, q) − E(uh , qh ) = E (1) (q) − E (1) (qh ) + E (2) (! u) − E (2) (uh ).



                        

E

(2)

E (1)

          



                             

     

   ! "  # $   %&

Ì   E (1) (q) − E (1) (qh ) =

1 1 ρ(uh )(y − ih y) + ρ∗ (uh , yh )(u − ih u) + P + R1 , 2 2

'

 y ∈ V          au (u, q)(ϕ, y) = −!J(J ∗ J)−1 ∇E (1) (q), C  (u)(ϕ)



ρ(·)(·)

  

ρ∗ (·)(·)

∀ϕ ∈ V

(

       

   

ρ(uh )(ϕ) := f (ϕ) − a(uh , qh )(ϕ) ρ∗ (uh , yh )(ϕ) := −!Jh (Jh∗ Jh )−1 ∇E (1) (qh ), C  (uh )(ϕ) − au (uh , qh )(ϕ, yh ). )

  

  R1       



   

  P       ! eu  + eq  + δh v + δh z¯ Rm (u) , |P | ≤ C V V V Z Q

*

 eu := u − uh eq := q − qh  δh ϕ := ϕ − ihϕ         Vˆ

Rm (u)           +  

     v ∈ Vˆ    np   ∗ −1  (J J) ∇E (1) (q) j wj v=−

+,

j=1



       z¯ ∈ V     au (u, q)(ϕ, z¯) = !−

Rm (u) , C  (u)(ϕ) Rm (u)

Z

∀ϕ ∈ V,

+-

      Rm (u)         z¯ = 0     C!   

      h        C¯ 

           



              ∇E (1) (q)

                ∂ (1) E (q) = Eu (u, q)(wj ) + Eq j (u, q)(1), ∂qj



 wj        ∇E (1) (qh )                         !    "# $ %  &' Ì   E (2) (! u) − E (2) (uh ) =

1 1 ! ρ(uh )(! y − ih y!) + ρ!∗ (uh , yh )(! u − ih u !) + R, 2 2



  y! ∈ V  

       au (! u, qh )(ϕ, y!) = Eu (! u, qh )(ϕ) ρ(·)(·)



(

∀ϕ ∈ V,

 ρ!∗ (·)(·)            

  ρ(uh )(ϕ) := f (ϕ) − a(uh , qh )(ϕ) ρ!∗ (uh , y!h )(ϕ) := Eu (uh , qh )(ϕ) − au (uh , qh )(ϕ, y!h ).

 

     R!        )               y − ih y *

u! − ihu!   +        ,  !             + *                       !               ,        "# $ %  &' - *          u − ih u  +              uh          )       u − ih u* y! − ih y!

.

δu := u − ih u ≈ u ! − ih u !.

-        )      ,  /   0 (    *      /  *       )            /   0 (   /   y ∈ V     au (u, q)(ϕ, y) = −!J(J ∗ J)−1 ∇E (1) (q), C  (u)(ϕ) + Eu (! u, qh )(ϕ)

∀ϕ ∈ V.

              E(u, q) − E(uh , qh ) ≈ ηh =

1 1 ρ(uh )(y − ih y) + ρ∗ (uh , y h )(δu), 2 2

0 1



 

 ρ(·)(·)  ρ∗ (·)(·)                 ρ(uh )(ϕ) := f (ϕ) − a(uh , qh )(ϕ) ρ (uh , yh )(ϕ) := −!Jh (Jh∗ Jh )−1 ∇E (1) (qh ), C  (uh )(ϕ) + Eu (uh , qh )(ϕ) − au (uh , qh )(ϕ, y h ). ∗



                                    ! "               #!           $        !! %& ' ( )*+!   

"                    ! ,                      -  ! .  /    $                             ! .               0  1                 

     ! ,    /                   & O(N )/  N      ! 2               3 4/  )+!   

,         5       &         (q1 , q2 )       Ω = (0, 1)2  −∆u + q1 ux + q2 uy = 2 u=0

 Ω,  ∂Ω.

67

.           

E(u) =

u dx

6

Ω0

      Ω0   Ω0 = (

1 15 , 1) × (0, ). 16 16

.                  5  

            ξ1 = (0.25, 0.5), ξ3 = (0.75, 0.5),

ξ2 = (0.5, 0.25), ξ4 = (0.5, 0.75),

ξ5 = (0.5, 0.5).

               

C

 

  

    

Ci (v) = v(ξi ),                  

(u, q) ∈ V × Q

 

V = H01 (Ω)

 

Q = R2

1 (u(ξi ) − C¯i )2 2 i=1 5

  



C¯i        5 ¯    C ∈ Z = R     "     ¯i = u(ξi )$   #    q = (8, 8)! $$ C       ! 

   

  

u

                           $              "             !                      

Es (q) = q1 + q2 

                        

Ec (u) =

1 2

2

C(u)

$               

       !  %& ' (  )*   %&! +

' (  )*$       "             "            ,$

    E(u)               -    ,   "                .  $    !    



 

       

    

E(u)

    



                                                                    

Ief f := (E(q) − E(qh ))/η



  1                        

E(u)

          N

E(u) − E(uh )

η

Ief f

      

         

        

      

                    ! 

   

E(u) 

           "  #

  !" ! #         E(u) $% !    "   Ec (u) $ &%

           



  

                   

                                        Ω = (0, 1)      Ω     ∂Ω = Γ ∪ Γ ∪ Γ     2

1

2

3

Γ3

Γ1

Γ2

Γ3

       

        

   −∆u + q yu = 2  Ω, u = 0  Γ , u = q  Γ , ∂u/∂n = 0  Γ .        #  1

 !"

1

2

2 3



E(u, q) = q2

 $"

∂u/∂n ds. Γ1

                     " ξ = (0.25, 0.75), ξ = (0.5, 0.75), ξ = (0.75, 0.75).  %"             C    

   C (v) = v(ξ ),  &"     #         

  (u, q) ∈ (g(q) + V ) × Q  V = {v ∈ H (Ω) | v = 0  Γ ∪ Γ }  1

2

3

i

i

1

Q=R

2

1

2



  3 



 12 (u(ξ ) − C¯ )

               g    i

i

2

i=1

 C¯            C¯ ∈ Z = R                u        q = (50, 1) !! C¯ = u(ξ )! "                            ! #  $               % &  %  %   

                 E (q) = q + q   '   '  '  ' %  !  %            (  ! )                     %     "  ! g(q) = q2 x,

3

i

i

i

s

1

2

   E(u, q)              

)         E(u, q)           ) *! ) +             %   $     ! )               , %     "  !

           



                E(u, q) N

E(u, q) − E(uh , qh )

 #    $$ $ 

!" !%  !  !" %!"" !# !$%

η

Ief f

! #!$ !% !# !% #!$ !$" #!$ %!  !# ! #!$ !"% !#"

   &             E(u, q) ' ()     '  (     *   * + ',(

     

             

!"#   

$   %&''(

&     )    #    )            )    * +  , #- . /0  )

%1(

&23&41 %554(

     )          )              )  6  /0  &'' % 6 

 (

7    8 9 * : 

7   

3'& %&''(

1   $ ;    )   9     )            <    =0       !6

%(

. 7  >

3& %&'''(

?    @+                A           /0 ) )#  

0)    %&''(

4 7" 7 * .B >   "  ,  @ 666

70   

/ . * :  #$  %5C1(

2 : 7  B) "  ,  )  , :  / )# $ :0)  7 *   %52C(



 

                        

      !    " 

#$%& ''()

#*+',% +  

& - ./  / 0 1  1   /& 2! 3& 32& /& $444 *4 56 7

  / 8 2  -   /      /      /    9   -  *:    / 3    2! 3& 2   ! /   / / 3   & / #*++:% ** 5 7/

;

 /   3/  /  & -< =>

#*+:4% *$ 5 -/  / 25 ? -  "     2  2 

"   & 2  -< => #*+++%

              1    1     2 1

2

                                

! "   "    #   # "      $        % &  '  (   &  ( "        

       ) "    "    "              "* #           "       "   "  

               +,       ) "   +,     

     "           " *    ) "    "  

   "  +   ,  ) ,- !.  ./0#. /# 1*     !.  ")  "         ./     

     2    "+   3      )    "           "  " +   + *     "   " 

  !. ,  "      ,        ")  "    "             +,

  *          

  " 

  #. /# 1*   ) "        "       

  " )  +  +   4     0    + *    ) "    " 

 +     )     " 

  !. ,       

 +   #. /# 1*

 

                                                                  !" #" $        %       %           & '  (" )" *    



      

        



  

 



           

              

  

   

                    



       

  

              



  !                     "           



#$%$& '                       ()#*%)+,        #$%$&   -                   ()#*%)+,

   

       

              #$%$&        



           )      

  

     - 

               /$0 1

  

 .

  

      



2           

                       '0          $+(3( ( 4    

    

    

$0$#( 1

 $0$#(

2 # 

               

   5 67 " 

  

  

      

 $0$#(               #$8)9 !$(3  #$%$&        

        

               

           

   

  $0$#(  #$%$&:()#*%)+, $ 

                  

   



    

 

   

 $               4                     $       

    

   

           

          0       .                    

   

   

          

         

                  

 

           

    

    $0$#( 

      

      0 .         -        

   



  

 

       

     

        

             

 

       



                 

  

              

   !     !    ! 

      

                         

0 9.8m/s2  $     

     "#         

            

%                &        

  



   ! !    !       

 #'(  

 

  )                



       

)

   !    

 *  +     

, 

  

          

250kg !



    

1.85m ∗ 1.21m ∗ 0.06m

  

       

14cm



6cm!

  ! 

 .    

     

 *  -   &   



15kg 

      

 .          

  /             

          

       '0/

                    10kN/mm!    200N s/mm    2cm         .    /     

 )   

       1                   23  245



  ) , 

          



*  -    &                   

   %             

&        . &     

                       !"



      

                                      

      

           

         

 τdriving =



Iud + Ff riction r



 I         0.227kgm2 ud   

   Ff riction                 r        20cm   

   

      

             !       DesAcc   "          #                    $        $   %      

            #           $ &                   

                  '                      ±20              

                        DesF Steer

  (  ) *

 +  

                     ! "#

&

                       , '       

          l        

  

     #  

   



                           !        

    

                                    

  "#$   

   Pr           !   l

       Pf   !              "   !     Pf Pr  p          γ 



       

Pr = z =

x + a cos θ + l cos(θ + pγ) y + a sin θ + l sin(θ + pγ)

 

x, y              θ            a         l, p        





 

                

Pd 



1 Pd = zd =

 d       

x + a cos θ + d cos(θ + ϕ)

2 

y + a sin θ + d sin(θ + ϕ)

Pf Pd

               Pf Pd 

            Pr      

ϕ

 

Pd 

 

                        

l

 

p

!"#   

    

" $ ˙ d, ¨ ϕ, ϕ, ¯ −1 (γ)F v, um , γ, ω, d, d, u=E ˙ ϕ¨



E(γ)  

        γ

  

       !"#   %        

$

u

F

  

    

E(γ)   F      

   

  

      &'&()     

        

       *      

    

     &'&()

  (&+&,        

(&+&,-                   

           )(.+/0   (&+&,  1         2      3    4   & )(.+/0            5        1  

    

      

        .  )(.+/0   2

       2           &'&()        &'&()                     &'&()   6 7



 

    &'&()     )(.+/0

           8

            



   &'&()             

   



                                                       

                 !

                     

 " 

  #$#%&  

  

 '     

 

  

    

     

                  (      

˙ d, ¨ ϕ, ϕ˙ d, d,

 

ϕ¨

  (     )  

       

        

  

        

         

    

     

      

          $*        "                    +

           " $*        ,     

  

  

 #$#%&  )     

                 



#$#%&  

   

             

  

          



 

      



              

    )                )                      

    





      



          

     







          

  

      !  "#$"%&   

             '  (

        

    

)    *   "#$"%&   !  *  + ,   +-  .   /   *     *  *      -

   



                                                                    !   "                        # $ %                 

                           &          

     l, p, λ  ξ                     (l, p, λ, ξ) = (2.5, 1, 1, 1)   %   

   '        l    (                    '             

    l = 2.5m.

   

 %     ) *+              %                 2.5m            ,                      

            &     -     %     

  &                # $             



      

    

          

                        

 

           

                            

                             



  !!  " #       $     

        % &   ''

 

(   ) )     *  ''  *+,*- -  .     /                      % &   ''0 (   ) )     ''0  *+'1*++ * 2 3

 $   . .    $ 4  5                    &   /6667/667$(/ /    )    /       $   '''  1+01+ 8 $ 2   9 $             

    !

   &   '': /666 /    )    $   !   )   " 8  '':  *0'1 *1+ 0 ; <   !  =   !

         "     #   &   (   )  )    " *  -++  -***-**: 1  <    2 > !

   $       %   &  '( #( &   (   ) )     -+++  *-,8*-,, ,  <  2 >  ! &  $ )(      $   &   -++ ;   !   )  $    -++  ++1 : ! &    <      !

   $    $ '( #( &   , /    )    ) 

  ) (  ;   " ?/)(;)"@ -++- $      -++-  ,0-,01 ' 5 4=    !" 5   $  $      '

  ' &   /    )    $    A': '':  8+ 88 + 5     ) !  $    ! 2  '  (   '

       )  B ) 6

   " * #  9 -++-  0

                            

 !

    "  #$ " !      ! % ! & '(  )  

    

 !

 

                                                                                                                                                                                     !  "#    ! "#          !"#                 $                                           $      %&'             $              () ()3 #     ()3    ()9 #                   * +                                 *         +                         ,                         +     -     &                                                   



                  

                                                               !    "            #             $ "               ! %         !   !                    &'   !                    !       

   (      

           

       !   )  !                !      *    !  +                               "      , %           -

          %                    !         -        "        !

        

Ei i = 0 . . . Nl       !       Ci→j    

               

i

 

j

Ri→j      . / .(/ % 0          "         "

          

Ri→j

                     +  -  !          !                ! 

i     x     t ni (x, t)   

Nl Nl   dni (x, t) =− ni (x, t) (Ci→j + Ri→j ) + nj (x, t) (Cj→i + Rj→i ) . dt j=1,i=j

j=1,i=j

1         !  

dni (x, t)/dt = 0

  

     1     2     !   !  !            3     -                    !

     



      

          

                        ν            ξ = − ln ν + const.    t      x       n                        !"          #                $"               %&         β = v/c  '"  ( )* +          

     

 

∂I(ξ, t, x, n) ∂ξ = −χ(t, x, ξ)(I(ξ, t, x, n) − S(t, x, ξ)) n ·∇x I(ξ, t, x, n) + w(x, n)

 

 w(x, n) = n

∂β(x) ∂x

$



%

n

 )                   χ                         ,   -  B  B         ϕ(ξ,ˆ ϑ, ξ) ξˆ       ϑ        



j→i

χ(t, x, ξ) =

i→j

ˆ h exp(−ξ) ˆ ϑ, ξ). (ni (x, t)Bi→j − nj (x, t)Bj→i ) ϕ(ξ, 4π

/     

.

!             n       

            A    ,   -            , !                        0   1      !" 2                                                       S(t, x, ξ) =

ni (x, t)Ai→j nj (x, t)Bj→i − ni (x, t)Bi→j i→j

            

2  3&                 4                                  $" 5               



 

 dni /dt = 0                                                                     !   

            "

         #!          !       

      $ %    &  ! '           ni (xk , t)              (   ()  *   !   &  !           !  +    #          !   !     %              ,-#     

   !                            .       !   /  !   *   /          ! 0 *      !      

             %             

    $  

                                                 ! "#$         ! #$           !              "             "#$            % & '() 1!       *              !    

-    - 23  456 &        

      *          *           &          ,)         !      

       7           1!   89&               ! (       

      ! 

     



            J = 0 → 1                         ! "       

      #    $ % &  '    #(       !     "   #     !  #  )*



 

     

            

                                  

         

  

         ! "    # 

     #  

         $   

      %  &''()    # #      #     

                                 *        #         

S

#  

 +          #            

 

       #   , 

χ

        

      

      

       #        

   

S



χ

 

w

       "   

   #      %      )

s 

I(s, ξ; w) = S(s, ξ) − S(0, ξ − ws) exp  −



ξ



exp − w1

ξ−ws



ξ

χ(ζ)dζ

 − w1

" dS s −



ξ

χ(ζ)dζ

ξ−η w ,η

$

dη.



η

%-)

ξ−ws

$     %    

       #   #          

I(s, ξ; w)

I(s, ¯ξ; w) 



   )         

 

   

ξ    #         ξ . . . ξ + ∆ξ  $         C D

       

          * 

ξ

I(s, ξ; w)

  

   

       . 



-        #

E   C D I(s, ξ; w) = S(s, ξ) − S(0, ξ − ws) exp − w1  −

ξ

E

ξ−ws





exp − w1

ξ

χ(ζ)dζ

F

" dS s −

η

F

ξ

χ(ζ)dζ

ξ−η w ,η



$

dη.

0              *     #  

      

ξˆl %l = 1 . . . )

%/)

ξ−ws

    #

    

                               #    &'1( &2(



E



 exp − w1  

exp Θ

     

F

ξ

χ(ζ)dζ

ξ−ws







= 

ˆ ϑ) exp − 1 %(ξ, |w| −∞





ξ+|w|s/2

ˆ ϑ, ζ − ξ)dζ ˆ χ(ξ,

 −1

 ˆ dξdϑ

ξ−|w|s/2

 

Θ

    

ϑ 

     

              

P (χ)

     

P (χ)

      

        !" ! #               $             %                  

P (χ) P (χ)    

&  

!" 

! &      

      '         (                 

   

  %              %   

                         w       

                                                w              !                !                 "  "       #    $%&# $'&

   )         *  +             #            



 

        xy           z                xy                                                κ ∝ T 5      κ ∝ T −5                

    !         

                 !       "    !         !          #  $!  $      %  

     



                                                                             

                                !     "      #  "                         

κ(T (x)) (B(T (x)) − J(x))) = H(T (x))

$

κ     %  T       B & '   J    H     H                

$ " 5 H(T (x)) = q ∗ T (x) × 1 + (R(x) − 1/2)

()

0 < R < 1       "    1/2 q   *  ()      " 

"       "    

                  *                         %  +       

    "     "  "     κ ∝ T ±5  ,    J                 "   B  * $  *  " "       -    " ."              /   #           ,                       .             0 '12         3      "  ! /  4     5 #  5                   .                    .   "       +     "                       "            6 "    "   #         "  . '     "               !                

    +        "                            78   9,*                  



 

                                                                      !"        "#     $%&                  '                 "      

                 (        %                       

   ) # * * # +, &  & - #. + /  0  0    0 #                  1 "       2       /     34  1# 5 

               

    !  "# $%"" & % '   ( )   *  )  *  $ +,& - '. / /( 0 -(12304 3  5 6 '.6    7 8   )1  9  ) : $%"" &         

    #  ) '; 4 <8 2= <   > !  ,", %""

9 ? < 0  /   / ) $ +@& @         0 5         A      !   ," $%"""& ,         0 5         AA 3             !   , $%"""&          0 5         AAA )        !  

#

$%""%& +         0 5         A= *9  5    9    !   #- $%""-& "         (5    6     B     ?C)0  +@- $ ++&

  B '  /  )  0 D 2   (E F? ?G  'D   )  %+ $%""%&

                   1   

2 1 2

     



         

  

                                  !" # " #  #      $  # %&' (      

     #  )                *                    )           ( #      ) +   %&'               #  )

 

                                       ! "        #        $%&' %(' )(' %*' %)' %+, -      .     /0' #                 !         #  /0   1            /0'  $%&' %(' )(' %*' %)' )*' %2,       #'     .                -      #    '       345     0        #           6       #        -          #                  

,   !                          )



    

     

                                           

  !" #               

 ! #     

                                $     %       

     "  &  ∇· B         

       '         '        

 

      (          

   )(                 '      

          

 ! #      

     

  ! #        

  * ∇· B   +  

 *   &     & 

∇· B

  +       

 

      ,      

 ! #    -            

   $                            

       '        

              (  ,                  '         ! #                  .!           

 

   ! #       



⎞ ρ ⎜ ρu ⎟ ⎜ ⎟ ⎛ ⎞ ⎜ ρv ⎟ ρu ⎜ ⎟ T 2 T⎟ ⎜ρw ⎟ ⎜ ⎜ ⎟ + div ⎜ρuu + (p +2B /2)I − BB ⎟ ⎜ e ⎟ ⎝ u(e + p + B /2) − B(uT B) ⎠ = 0 ⎜ ⎟ ⎜Bx ⎟ uBT − BuT ⎜ ⎟ ⎝By ⎠ Bz t 

/"



         









ρ 0 ⎜ ρu ⎟ ⎜ Bx ⎟ ⎜ ⎟ ⎟ ⎜ ⎛ ⎞ ⎜ ρv ⎟ ⎜ By ⎟ ρu ⎜ ⎟ ⎟ ⎜ T 2 T⎟ ⎜ρw ⎟ ⎜ ⎜ Bz ⎟ ⎜ ⎟ + div ⎜ρuu + (p +2B /2)I − BB ⎟ ⎜ ⎟ = −(∇· B) ⎜ e ⎟ ⎜uT B⎟ ⎝ u(e + p + B /2) − B(uT B) ⎠ ⎜ ⎟ ⎟ ⎜ ⎜Bx ⎟ ⎜ u ⎟ uBT − BuT ⎜ ⎟ ⎟ ⎜ ⎝By ⎠ ⎝ v ⎠ Bz t w       

(Bx , By , Bz )T  ρ  B 2 = Bx2 + By2 + Bz2

u = (u, v, w)T  e 

    



      

B =

        

             

1 1 p = (γ − 1)(e − ρ(u2 + v 2 + w2 ) − (Bx2 + By2 + Bz2 )). 2 2    

γ

   

       

5/3

         

             !

  "#$ #% &'            

(      ) 

∇· B = 0

∇· B

    *       

           

Ut + ∇ · F = 0, Ut + ∇ · F = S, 

        

U

F

       +,

      S                

% S        S = 3i=1 Ni (U )Uxi   (x1 , x2 , x3 ) = (x, y, z)           

        

         "-'

      

∇· B = 0



              !   

    !  .        /    

                0   1 2 /          .               ,         !    

∇· B = 0

                     )   

∇· B

               ) 

     3      ,   ,           !                 (                   !  4                           )    "#5 #$ #%'          !        /     .



    

                     

∇· B

    

  

∇· B

 

                     

! " #$ % & '   ( 

#            )    *  )                 

    

        

  *  +   *

 ,       -   +   $*.    / +    

 , 

  

      

 0        #1 + 

*           + 23   

         

          4       +      

x*,     5       +    6 A(U )   / +  ∂F/∂U         F  S   x*    #*   + 4       *  S    x*  N (U )Ux  7  8  9   7  $ +               : ; / +   

:* ; / +   

(A − N )

    -   

A   A

   

  *  .

                   +     +  <  23 =>    =             *  / + 

(A − N )

 

   +  

  + +        8 $ 5 =           8 $ ?        7     23 =>    =        +     *  23 )  ?      *   

 *  +         

+     $$ %   

   

           

      +   *

 -    

A(U ).

@   



     +

       

 *          

   

   

  *

  +   +         -

    +          .   A 

: ;   +   B    *

         

 

       



         

                           

        !

   "#$% &'()    

     

                     * +   ,'-                  !  "#$%   .         



    *

+   ,(-

       %    /    "/0                  ,        1   2     -     ,        1   2     -                

                     3 

    4             

         +                                                 

  

 

  / 

             

4              .

     

                    

                                             

L

,      1           25



U

n

 -

U ∗ = L(U n ),

,6-

       

  

n

"   

                   7 1                   1        1  

F (U )x

 

∂F ≈ D06 Fj + d∆x7 (D+ D− )4 Uj , ∂x D06 D+ D−

 

,8-

   1       9           1   

          

d

   

  



    

 0.00001  0.01             

                                                                     

!     "                                                         #                       $!      ! %   &'    '                  &              #                              

        (                                              ) (*+    ,    )   

         &   ,               $-      ! Ujn+1 = Uj∗ −

∆t f f [H − Hj−1/2 ]. ∆x j+1/2

.!

f = Rj+1/2 H j+1/2 . 0  Rj+1/2       /   Hj+1/2    /          1         +0∗ /  Aj+1/2 − Nj+1/2 !     2     Uj+1/2             H j+1/2              3             2         U ∗   4! -                                 / 5                                                !                                                      l -         H j+1/2  hj+1/2 , l = 1, 2, ..., 8  

     l

hj+1/2 = (ω)lj+1/2 (ϕlj+1/2 ).

6!

0  (ω)lj+1/2         &      7 / (ω)lj+1/2      8          

         



                     



                          

   !"# "$ %$ "& "%'

(               

  



l ϕlj+1/2 = gj+1/2 − blj+1/2



!"&' (            

                  )        

l    

l gj+1/2

 *



blj+1/2

    + ,

                        

l        

  -         

ϕlj+1/2

   

         

blj+1/2

ϕlj+1/2

   

.   

       ,      !"# "$ %$ "& "%'

. ,     *  /   (0     

    

          

blj+1/2   l   ϕ j+1/2

1   

      

)

   

 -  

  

ϕlj+1/2

2

    ,      +              3

       

*0     4

5                       6             

                     -      4  

5          

                      

            4  

5  

(   

                       7 !89'    

 

    

.         ,     ,         6       

     

  

   (   ,                       33       

   

      

       

  

  33:0$  

  

33    

            

33:0$    (     

                ; 

d



 <

                     */

           .     

 , 



0.25

   

   

(        =2>   !%"' =2>?      */ 

@7A            

  B C     

     ,      



    

                       !"#"  $ %   &   '&  (   (   (  )'  '   ''' *  '    ∇· B " '      %%$   %  ' (  (  $  +   ),,& ),,   & *   % ∇· B " '       

 +         -    .  L2   ∇· B  %  "'     %"   /  0"     " (  0"   ''  %  '      1   ∇· B  ''  %

          γ = 1.4         #'(''1  '  (  "    %(" (  23& 45& 67   ( "   "%  237 *   *  8 4  %    ('"   x('   ' *  8 4   ,,9) 6 -$  ' *    '  % (        -d = 0.001.  '"    *"  :' % ) %%  T = 0.5&  %'   "      '(       ' 

"   T = 0.5 * 5; 0"  " '(' * ;<  43  " 8( '('   :  &  '& 51 × 101& 101 × 201& 201 × 401& 401 × 801  801 × 1601 =     :      ' +  *  '   %   - 669) 4;& d = 0.001.  "     '" %"  " d = 0 - 66.    '   :(  )  0.5  %'   "         > (  / %"   *(&   ?* ('(  '  &  / %"   0" &  %"%   $   ∇· B " '  *  ?*  ''  "  / %"  8" 3 *   -'.  ∇· B -'. "  T = 0.5&  L2   ∇· B  "    -.   -% *.   - *.    %"   ),,  ),,  *  8 5  ∇· B " * 30 0"  " '(' * −150  150  "  >  " *   ' '  - "   3 .      &     $  ''  ''    "    (      : @  %'       ''       "' ' % :$ %         23,7  " " ),,& ),,9) 6& ),,  ),,9) 6  '' ' $ 

"  '    669) 6 -:"  *.       '(  ( ( (   ( (    * :'   *(&  ∇· B " '   ( + * "  A :'  B % (  A:' ''B

         



              x    !"#$% &  '('×)('  

   *+  ∇· B *

+   T = 0.5,  L2   ∇· B

     * +  -.!/ * 0+  1"#  * 0+



    

               

  !  "   #   $ %&      '!          ! (  )**  )+**      

 !,! & '   -(  ∇· B & !  

     ∇· B    T = 0.5  L2   ∇· B

       ! "# $ %  &"' ! %

           γ = 5/3  -    ./ 0   ( 

 1.2 3 !      & !        4 

 5  "' 6 7  !  '! &

' !     8 9   !     8(  9  ( 

  5  "'    !  &  T = 0.2 5 6: !  & %&

 ! (5 :;  .<  !!& !  &   0   ( 

5    ! &  =!&     ( ! 

'     ! ) '     &   !       &!&       ! ( 5       ! &       ! #   !  ! &   !, 5 .6 '  !     !  & ,    &'  ∇· B !  &  L2     ∇· B & !       !  ∇· B 5 5!'    !      

!       

'#!             )** )**>)/? )+**  )+**>)/?  

         



                               

              

     ! "#$  ! %     &% '(   &' '(     )%



    

  L2   ∇· B    ∇· B   T

= 0.2   !" #$ $ %& '&   ((&  $   '& )&*  #$   ((&  && ( ) $* 201 × 201 401 × 401  801 × 801  (

       γ = 5/3    

                    !  " #" $ "   %      " %  & ' ('  $ # $ )*+,,-*.  T = 3.14 #  /0 1 " / 0  1   %    0# '  " $ #     " '      % 2  "  #        %     " 3%     '   #      4 ' 5≈ π6 %

         



                                                           

           !       !          !    

           !""# $    %&    801 × 801    T = 3.14' "  #       

  $%&'( )   *  $+,#             $+,#    - !  .  /0,# 1  

   $+,#    1             -! .   $+,#  T < 0.7       /0,#            

       $+ )d = 0*  /0 )d = 0*  

                     2     !     3    !            /02!  $+2!    101 × 101      045/6 3

27  $%&'(



    

  L2   ∇· B     ∇· B    

# $$ %  # &$$  # 

!" 

  '())*'+, L2   ∇· B    - ∇· B   T = 3.14  - ! &% .%   %  &% .%  %% 

 #

         



 

                                   ∇· B                 

              !             "    # !#    $%&'  (   )*  #       +,-.   )                !     !           ∇· B         /012          !

                   3                    )            !    !                      !            

   

/42 5 &   6 6 #                     # 7 &  5 !# ½ 8499:;# <<=<== /2  #  >#  >?# & # ) %  #   + #          # 7 & 5 !# 811;# =<@=:0 /02 AB    7 5 #      !" #$         % %  &   ' ( 5 !   B# 849C9;# 4@04:4 /<2 +   5 A +# &   ' )           7 & 5 !# 8499C;# 0040=9 /@2 +   5A +#   !'    !    *       !  '  (  ! 7# 8499C;# 04:00@ /=2   % "#  !  +   "   +!  ,  

 -    # D 5 114=0# 8114; /:2 &A ,  7 !#       '  . &   "   #  ! 7 849CC;# =@9=:: /C2  "# )+ 7#  A!  7B 6# "   !  / !     . & "!    (   ! 7 8499=;# ::::90 /92 6 6 #  0 1 !2 ( 0    !   # 5  )  # 'E$  F BG D# 499:



    

                   

    ½  

   

!"#$

                !  "# ' )  *( +#  #,"! " ' -  ".   $ %    &'   ' )  *(  !  "+ % -  /   0 0  '   &  !      (! ) % * %)( ' !  +"! % 12-   3    +# ,     3 4   ' 5     "$# ' *   0/ 64 - !     ')+ - .       / %%/    # *( 5  /

 % &  ' &( 



#

$

,

  "$$

  . 0 !      1+  #       ' , 2 8%9"0) $"$

!  *7

%% : -( 0   %) $

  ! 3#    %    ' )  *(   +$"# / <=-  &  >    ! 4 ! &  ,      +     08%

  *7 *: 0 3' :  38 4  6: 6 ; 7

+

3  0) 30 %% %    1    )) '   )  -

  !  '  

   . 3 -      # 08%

 / <=-  &  >

3  0) 30! %)  %% %   ? %8%% ", *  -   , %8%% 56    ' 

#  "! " # ,!  ' &     0!  # 08% 0) 30"

"$  %  %  ' )  *(  /

<=-



&



>

%% % 0   (  ? *  -   91" % )   5  6(      7  . @ )4 $" 

  ' ,5      .     # *  -    8  "

 / <=-  &  >

      &()4 *4  ,"  *   %

$ " # ,!  '  

  ,  # %6 4 +   %8%% #"$+ * "

 / <=-  & >

 -   ! %8%%A56    '  #"! # 1  5

+  ! 478           ' )  *(   !,"!,

#  3B

         



                     

  

        



∇· B

     

     !      " #!  $% &       '

!   "  #

$ % &!'

(  &&&

&   %(  !  )! #!*% &     

  

#

)* +  $  ',&  +

,& ' 

$ %,&&'' -. '

     " #!*%&      +  &  !  !%   

/  #  $"0  " ( 1 0 

 0  2

(

½ 34 ,5'

'  #    " ( 1 0 

,!   

(  0  2

  #   

3&&&4 55,'

            "%  #!   %- )   

  # " 6 $17 

% .  - 8  0  

39"      : 6 ; 4 ) 8 +"0+  . 3&&4<  =*$ %++ =  %=&,' + &&

 !      " #!

  !    )).  /   ∇· B ,!  

5&  # " 6 $17 

=*$ =  %=&5& ( 2 &&5

,!         0    0            ! 

5 )$#

3

*999 %    

4 5&>5&/

%" '         )      !

5  ?+ 2 

 0 



  " 

 

$* ( $+

34  5,'

 

 

     

Ex , Hy

       

                               



  

                 

       

   

 



                    β = 10−5 

                    β = 3 × 10−6 



  

                     β = 10−5 

         



  !  "   #    $  %    ##  

  ! 

 



                        5    

  ! "     #"!     



  

             

   

             !  ν = 0.1"    



  "         #      !    $%     &      D = 800     '   !

 



                           

   !   "##$$ %        & '

      # ' ()(*)  #&



  

            !  "  # $    Us = 0mm · s−1 %&' 3mm · s−1 %(&' 6mm · s−1 %&  9mm · s−1 %&

      )  *    

 +   ! , "       

 

ED (M=24) DMRG (np=7;m=600)

-5.0

ED: U/t=2 ED: U/t=4 ED: U/t=6

-6.0

DMRG

0.5 Ekin(ep=2,U)

Ekin(εp=2,U/t)/Ekin(0,0)

1.0



-7.0 -8.0 4

0.0 0.0

2.0

8

12

16

M

20

4.0 U/t

24

8.0

6.0

                   g2 = 2  ω0 /t = 1       !"  "#$  

 Ekin  %   U  g2 = 2  ω0 /t = 1& '    !"  

     (%    M      )      "#$    np = 6 (   m = 1000        

U/t

reg

σ (ω) [arbitrary units]

3 ED DDMRG η=1 DDMRG η=0.2 DDMRG η=0.1

2

1

0 0

1

2

3

4 ω

5

6

7

8

       *  '   N = 8  #   ω0 = 1 ) ""#$      m = 200    %     η = 1+ η = 0.2  η = 0.1+  '  '   η          ,-(   %        U/t = 6+ g 2 = 2



  

                        t = 0.3     !         "

       # $          %&  "  "    "

 "

           t = 0.5     "  "       +  + 

                     '  !        $  (      '  !   ) * "  3.5 ( 6.5

 

  



   

                         !    "     #       !   "$    # #       

       %#      & &      '  ! "   ( '  !"

  ) *    *+ #     ,-% '      & *./ 01   '      #    23  4 * 0&3



   

                   

   

                            

      

& '

!           "# $ % $  $

 



                              

       ! " #       $  # %  & '     

  ( ()         #

&  #   & 

 





  

                   

                   

               



    

      !

 



                      !" #    

           $%%$ %  & % 

   %%   

                  '$  ()))



  

                    

 !"

                    # $% !  &!  ' 

                    # $ !   &(  )*

    # + +(

 



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0

P0

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

1

P1

A0

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

2

P2

A1

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

3

So

R

A0

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

4

dd

R

A1

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

5

So

B

R

A0

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

6

N0

U2

B

A1

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

7

So

U3

P

WV A0

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

8

N0

C

Z

WT

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

9

N1

Z

Z

WT A0

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

10

N0

C

Z

WT A1

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

11

So

Z

C

WT

R

A0

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

12

N0

Z

Z

WX

R

A1

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

13

So

Z

C

wx

R

R

A0

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

14

N0

C

Z

J0

R

R

A1

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

15

N1

Z

Z

J1

B

R

R

A0

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

16

N0

C

Z

WZ

S

C

R

A1

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

17

So

Z

C

WZ U0

Z

B

R

A0

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

18

N0

Z

Z

WC U1

C

P

B

A1

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

19

So

Z

C

WZ U2

Z

D1

S

WV A0

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

20

N0

C

Z

WZ U3

Z

D2

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

21

N1

Z

Z

WZ

C

Z

Z

Z

WT

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

22

N0

C

Z

WC

Z

Z

Z

Z

WT A0

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

23

So

Z

H0

WZ

C

Z

Z

Z

WT A1

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

24

N0

C

H1

WC

Z

C

Z

Z

WT

R

A0

Q

Q

Q

Q

Q

Q

Q

Q

Q

25

N1

H1

C

WZ

Z

Z

C

Z

WT

R

A1

Q

Q

Q

Q

Q

Q

Q

Q

Q

26

N0

C

Z

WZ

Z

Z

Z

C

WT

R

R

A0

Q

Q

Q

Q

Q

Q

Q

Q

27

N1

Z

Z

WZ

Z

Z

Z

Z

WX

R

R

A1

Q

Q

Q

Q

Q

Q

Q

Q

28

N0

C

Z

WZ

Z

Z

Z

C

wx

R

R

R

A0

Q

Q

Q

Q

Q

Q

Q

29

So

Z

C

WZ

Z

Z

C

Z

J0

R

R

R

A1

Q

Q

Q

Q

Q

Q

Q

30

N0

Z

Z

WC

Z

C

Z

Z

J1

B

R

R

R

A0

Q

Q

Q

Q

Q

Q

31

So

Z

C

WZ

C

Z

Z

Z

WZ

S

B

R

R

A1

Q

Q

Q

Q

Q

Q

32

N0

C

Z

WC

Z

Z

Z

Z

WZ D0

S

B

R

R

A0

Q

Q

Q

Q

Q

33

N1

Z

C

WZ

C

Z

Z

Z

WZ D1

S

S

C

R

A1

Q

Q

Q

Q

Q

34

N0

H0

Z

WZ

Z

C

Z

Z

WZ D2

S

C

Z

B

R

A0

Q

Q

Q

Q

35

N1

H1

C

WZ

Z

Z

C

Z

WZ

Z

U0

Z

Z

P

B

A1

Q

Q

Q

Q

36

N0

Z

Z

WC

Z

Z

Z

C

WZ

Z

U1

C

Z

P

S

WV A0

Q

Q

Q

37

So

Z

C

WZ

Z

Z

Z

Z

WC

Z

U2

Z

C

P

C

WY

Q

Q

Q

Q

38

N0

C

Z

WZ

Z

Z

Z

C

WZ

Z

U3

Z

Z

C

Z

WY

Q

Q

Q

Q

39

N1

Z

Z

WZ

Z

Z

C

Z

WZ

Z

C

Z

Z

Z

C

WY

Q

Q

Q

Q

40

N0

C

Z

WZ

Z

C

Z

Z

WZ

C

Z

Z

Z

Z

Z

WT

Q

Q

Q

Q

       1−bit    

U0 WY



         



  

step 0

step 1

1

2

3

4

5

6

7

8

1

1

PWLT

Q

Q

Q

Q

Q

Q

QW

1

2

Q

Q

Q

Q

Q

Q

Q

QW

3

Q

Q

Q

Q

Q

Q

Q

QW

4

Q

Q

Q

Q

Q

Q

Q

5

Q

Q

Q

Q

Q

Q

6

Q

Q

Q

Q

Q

7

Q

Q

Q

Q

8

QW

QW

QW

2

3

1

7

8

1

2

3

4

5

6

7

8

PWLT

AR’

xPWLT

Q

Q

Q

Q

QW

1

PWLT

BR01

AR’

xPWLT

Q

Q

Q

QW

2

aR’

xPWLT

Q

Q

Q

Q

Q

QW

2

bR01

PWLT xPWLT

Q

Q

Q

Q

QW

3

xPWLT

Q

Q

Q

Q

Q

Q

QW

3

aR’

xPWLT

Q

Q

Q

Q

Q

QW

QW

4

Q

Q

Q

Q

Q

Q

Q

QW

4

xPWLT

Q

Q

Q

Q

Q

Q

QW

Q

QW

5

Q

Q

Q

Q

Q

Q

Q

QW

5

Q

Q

Q

Q

Q

Q

Q

QW

Q

Q

QW

6

Q

Q

Q

Q

Q

Q

Q

QW

6

Q

Q

Q

Q

Q

Q

Q

QW

Q

Q

Q

QW

7

Q

Q

Q

Q

Q

Q

Q

QW

7

Q

Q

Q

Q

Q

Q

Q

QW

QW

QW

QW

QW

8

QW

QW

QW

QW

QW

QW

QW

QW

8

QW

QW

QW

QW

QW

QW

QW

QW

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

BR11

QRB

subH

AR’

xPWLT

QW

1

PWLT

BR0u1

BR10

QRC

odd

subH

AR’

xPWRB

PWLT xPWLT

Q

Q

Q

Q

Q

QW

1

2

xPWLT

Q

Q

Q

Q

Q

Q

QW

3

Q

Q

Q

Q

Q

Q

Q

QW

QW

4

Q

Q

Q

Q

Q

Q

Q

Q

QW

5

Q

Q

Q

Q

Q

Q

Q

Q

QW

6

Q

Q

Q

Q

Q

Q

Q

Q

QW

7

Q

Q

Q

Q

QW

QW

QW

QW

QW

8

QW

QW

QW

QW

4

5

6

7

8

subH

AR’

xPWLT

Q

Q

QW

AR’

xPWLT

Q

Q

Q

QW

3

subV

aR’

xPWLT

Q

Q

Q

Q

QW

4

aR’

xPWLT

Q

Q

Q

Q

Q

QW

5

xPWLT

Q

Q

Q

Q

Q

Q

QW

6

Q

Q

Q

Q

Q

Q

Q

QW

Q

Q

QW

Q

QW

Q

QW

Q

QW

Q

QW

1

2

3

4

5

6

7

8

1

PWLT

BR0S

odd

subH

AR’

xPWLT

Q

QW

1

PWLT

QR0S

2

bR0S

PWLT

BR01

AR’

xPWLT

Q

Q

QW

2

QR0S

PWLT

BR00

subH

AR’

xPWLT

Q

QW

2

bR0u1

PWLT

BR0S

odd

subH

AR’

xPWLT

QW

3

odd

bR01

PWLT xPWLT

Q

Q

Q

QW

3

bR11

bR00

PWLT

AR’

xPWLT

Q

Q

QW

3

bR10

bR0S

PWLT

BR01

AR’

xPWLT

Q

QW

4

subV

aR’

xPWLT

Q

Q

Q

Q

QW

4

QRB

subV

aR’

xPWLT

Q

Q

Q

QW

4

QRC

odd

bR01

PWLT xPWLT

Q

Q

QW

5

aR’

xPWLT

Q

Q

Q

Q

Q

QW

5

subV

aR’

xPWLT

Q

Q

Q

Q

QW

5

odd

subV

aR’

xPWLT

Q

Q

Q

QW

6

xPWLT

Q

Q

Q

Q

Q

Q

QW

6

aR’

xPWLT

Q

Q

Q

Q

Q

QW

6

subV

aR’

xPWLT

Q

Q

Q

Q

QW

xPWLT

Q

Q

Q

Q

Q

Q

QW

7

aR’

xPWLT

Q

Q

Q

Q

Q

QW

QW

QW

QW

QW

QW

QW

QW

QW

8

xPWRB

QW

QW

QW

QW

QW

QW

QW

7

Q

Q

Q

Q

Q

Q

Q

QW

7

8

QW

QW

QW

QW

QW

QW

QW

QW

8

QW

QW

QW

step 9

step 8 1

2

3

4

5

6

7

8

1

PWLT

BR0u0

BR1S

QRD

QRC

QRB

subH

PWRB

2

bR0u0

PWLT

QR0S

BR11

QRB

subH

AR’

xPWRB

3

bR1S

QR0S

PWLT

BR00

subH

AR’

xPWLT

QW

4

QRD

bR11

bR00

PWLT

AR’

xPWLT

Q

QW

5

QRC

QRB

subV

aR’

xPWLT

Q

Q

QW

6

QRB

subV

aR’

xPWLT

Q

Q

Q

QW

7

subV

aR’

xPWLT

Q

Q

Q

Q

QW

QW

QW

QW

QW

QW

QW

PWRB xPWRB

step 7

step 6

step 5

BR00

2

3

4

5

6

7

8

1

PWLT

BR0uS

QR10

BR01

QRD

QRC

AL1

PWRB

2

bR0uS

PWLT

BR0u1

BR10

QRC

odd

subH

PWRB

3

QR10

bR0u1

PWLT

BR0S

odd

subH

AR’

xPWRB

4

bR01

bR10

bR0S

PWLT

BR01

AR’

xPWLT

QW

5

QRD

QRC

odd

bR01

PWLT xPWLT

Q

QW

6

QRC

odd

subV

aR’

xPWLT

Q

Q

QW

7

AL1

subV

aR’

xPWLT

Q

Q

Q

QW

QW

QW

QW

QW

QW

PWRB PWRB xPWRB

2

3

4

5

6

7

8

1

PWLT

BR0v0

RL1

P1d

PA

QLB

BL00

PWRB

2

bR0v0

PWLT

BR0v0

QR11

P1s

QLA

BL00

3

RL1

bR0v0

PWLT

BR0u0

BR1S

AL

QLA

4

p1d

QR11

bR0u0

PWLT

QR0S

BR11

5

pA

p1s

bR1S

QR0S

PWLT

6

QLB

QLA

AL

bR11

7

bL00

bL00

QLA

AL0

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

PWLT

BR0v0

QR11

BR00

QRA

AL

QLA

PWRB

1

PWLT

BR0v1

QR10

BR0S

AL

QLA

BL01

PWRB

2

bR0v0

PWLT

BR0u0

BR1S

QRD

QRC

AL0

PWRB

2

bR0v1

PWLT

BR0uS

QR10

BR01

AL

BL01

PWRB

3

QR11

bR0u0

PWLT

QR0S

BR11

QRB

subH

PWRB

3

QR10

bR0uS

PWLT

BR0u1

BR10

QRC

AL1

PWRB

4

bR00

bR1S

QR0S

PWLT

BR00

subH

AR’

xPWRB

4

bR0S

QR10

bR0u1

PWLT

BR0S

odd

subH

PWRB

5

QRA

QRD

bR11

bR00

PWLT

AR’

xPWLT

QW

5

AL

bR01

bR10

bR0S

PWLT

BR01

AR’

xPWRB

6

AL

QRC

QRB

subV

aR’

xPWLT

Q

QW

6

QLA

AL

QRC

odd

bR01

7

QLA

AL0

subV

aR’

xPWLT

Q

Q

QW

7

bL01

bL01

AL1

subV

aR’

QW

QW

QW

QW

8

8

step 13

1

PWRB PWRB PWRB xPWRB

2

3

4

5

6

7

8

1

PWLT

BR0vS

AL

P1

P1

AR

BL0S

PWRB

1

PWRB

2

bR0vS

PWLT

BR0v1

AL

P1

AR

BL0S

PWRB

PWRB

3

AL

bR0v1

PWLT

BR0uS

P0d

PA

BL01

PWRB

AL0

PWRB

4

p1

AL

bR0uS

PWLT

BR0u1

P0s

BL01

BR00

subH

PWRB

5

p1

p1

p0d

bR0u1

PWLT

BR0S

bR00

PWLT

AR’

xPWRB

6

AR

AR

pA

p0s

bR0S

subV

aR’

xPWLT

QW

7

bL0S

bL0S

bL01

bL01

AL1

QW

QW

8

PWRB PWRB PWRB PWRB PWRB

1

2

3

4

5

6

7

8

PWLT

P1

PA

P1

P1

PA

P1

PWRB

2

p1

PWLT

P1

PA

P1

PA

P1

PWRB

3

pA

p1

PWLT

P0

P0

P0

P0

PWRB

PWRB

4

p1

pA

p0

PWLT

P0

P0

P0

PWRB

AL1

PWRB

5

p1

p1

p0

p0

PWLT

P1

P1

PWRB

PWLT

BR01

PWRB

6

pA

pA

p0

p0

p1

PWLT

P0

PWRB

bR01

PWLT xPWRB

7

p1

p1

p0

p0

p1

p0

PWLT

PWRB

PWRB xPWRB

QW

8

PWRB PWRB PWRB PWRB xPWRB

PWLT xPWLT

QW

xPWLT

Q

QW

QW

QW

QW

step 15

step 14

1

PWRB PWRB PWRB PWRB PWRB xPWRB

step 11

step 10

1

8

step 12

8

6

8

PWLT

8

5

7

bR00

QW

4

6

PWLT

8

3

5

1

Q

2

4

2

7

1

3

step 4

step 3

step 2 2

1

2

3

4

5

6

7

8

1

T

T

T

T

T

T

T

T

2

T

T

T

T

T

T

T

T

3

T

T

T

T

T

T

T

T

4

T

T

T

T

T

T

T

T

5

T

T

T

T

T

T

T

T

6

T

T

T

T

T

T

T

T

7

T

T

T

T

T

T

T

T

8

T

T

T

T

T

T

T

T

PWRB PWRB PWRB PWRB PWRB PWRB PWRB xPWRB

           (2n − 1)      

  !     "        "   

 

step 0

step 1

1

2

3

4

5

6

7

8

1

xJ

Q

Q

Q

Q

Q

Q

CQX

2

Q

Q

Q

Q

Q

Q

Q

3

Q

Q

Q

Q

Q

Q

Q

4

Q

Q

Q

Q

Q

Q

5

CQX

VQX

VQX

VQX

VQX

VQX

2

3

4

5

6

7

8

1

JP

xH

Q

Q

Q

Q

Q

CQX

HQX

2

xV

Q

Q

Q

Q

Q

Q

HQX

3

Q

Q

Q

Q

Q

Q

Q

Q

HQX

4

Q

Q

Q

Q

Q

Q

VQX

JQX

5

CQX

VQX

VQX

VQX

VQX

VQX

step 4

step 3

step 2

1

1

2

3

4

5

6

7

8

1

JD1

HS

xH

Q

Q

Q

Q

CQX

HQX

2

VL

xJ2

Q

Q

Q

Q

Q

HQX

HQX

3

xV

Q

Q

Q

Q

Q

Q

HQX

Q

HQX

4

Q

Q

Q

Q

Q

Q

Q

HQX

VQX

JQX

5

CQX

VQX

VQX

VQX

VQX

VQX

VQX

JQX

HQX

Q

HQX

Q

HQX

4

VAR1

VQLS

xV

xJ2

xJ2

Q

Q

HQX

VQX

JQX

5

VKX

VKXs

VQX

VQX

VQX

JQX

HQX

2

VQL1

JD1

HS

xH

xJ2

Q

Q

HQX

2

VQL2

JD2

HQRS

HS

xH

xJ2

Q

Q

HQX

3

VQL2

VL

xJ2

xJ2

Q

Q

Q

HQX

3

VQL1

VQLS

xJ

xJ2

xJ2

Q

Q

4

VL

xJ2

Q

Q

Q

Q

Q

HQX

4

VQLS

xV

xJ2

Q

Q

Q

Q

HQX

4

VIX

VL

xJ2

xJ2

Q

Q

5

xCQX

VQX

VQX

VQX

VQX

VQX

VQX

JQX

5

VKXs

xVQX1

VQX

VQX

VQX

VQX

VQX

JQX

5

VKX

xCQX

xVQX1

VQX

VQX

VQX

step 10

HQR1

HGX

HKX

1

JQX

xJ2

Q

Q

HQR2

VQX

xH

Q

Q

HQR1

VQX

xJ2

Q

Q

HQR2

VQX

HS

xJ2

xJ2

HQR1

VQX

xJ2

xH

xV

JX

VQX

xH

JP

VQLS

1

VQX

HQRS

VQL2

3

HKXs

CQX

JP

2

HQRS

HQX

5

HQR2

CQX

HQR2

Q

JD1

xH

HQR1

Q

VQL2

8

HS

HQR2

Q

VI0

7

HQRS

HQR1

Q

VQL1

6

HQR2

HQR2

Q

2

5

HQR1

JD1

Q

3

4

HQR2

1

xV

HQX

3

JD1

8

HQX

4

HQX

2

1

7

HQX

Q

8

1

CQX

6

Q

Q

xCQX

8

Q

5

Q

Q

7

7

xH

4

Q

Q

HS

6

HS

3

Q

Q

6

5

HQRS

2

xJ2

xJ2

HQRS

4

HQR2

1

xJ

VL

5

3

HQR1

step 9

VQLS

3

HQR2

2

JD2

8

2

4

1

1

7

CQX

HQR1

8

CQX

6

8

Q

3

7

Q

5

7

Q

HQR2

6

Q

4

6

Q

2

5

xH

3

5

xH

HQR1

4

HS

2

4

HS

1

3

HQRS

1

3

HQRS

JD2

2

HQR2

step 8

2

JD2

1

1

JD1

1

1

1

step 7

step 6

step 5



xVQX1 xVQX1

step 11

1

2

3

4

5

6

7

8

JFXB

HW

HQR1

HQR2

HQR1

HG0

HAL1

HKX

1

1

2

3

4

5

6

7

8

JBr2

HFW

HW

HQR1

HG0

HQLA

HAL2

HKX

2

VI0

JD2

HQR1

HQR2

HQRS

HS

xH

xHQX1

2

V
JD1

HQR2

HQR1

HQR2

HQRS

HS

xCQX

2

V
JX

HQR1

HQR2

HQR1

HQR2

HQRS

HKXs

2

VQRe2

JFXA

HW

HQR1

HQR2

HQR1

HGX

HKX

3

VQRA

VQL1

JD1

HS

xH

xJ2

xJ2

HQX

3

VQRB

VI0

JD2

HQRS

HS

xH

xJ2

xHQX1

3

VsBRA

V
JD1

HQR2

HQRS

HS

xH

xHQX1

3

VSBRA

V
JX

HQR1

HQR2

HQRS

HS

xCQX

4

VAR2

VIX

VL

xJ2

xJ2

xJ2

Q

HQX

4

VAR3

VAR1

VQLS

xJ

xJ2

xJ2

xJ2

HQX

4

VQRE0 VAR2

xH

xJ2

xJ2

xHQX1

4

HS

xH

xJ2

xHQX1

5

VKX

VKX

xCQX

xVQX1 xVQX1

VQX

VQX

JQX

5

VKX

VKX

VKXs

VQX

JQX

5

JQX

5

step 13

step 12 1

2

3

4

5

6

7

8

1

JBr3

HQRd

HFW

HGW

HQLA

HQLB

HAL3

HKX

1

2

VQRe1

JAr2

HFW

HW

HQR1

HG0

HAL1

HKX

2

3

VBRa

VQRo2

JFXB

HW

HQR1

HQR2

HQRS

HKXs

3

4

VfARA VSARD VSARA

JX

HQRS

HS

xH

xHQX1

4

VKX

xH

JQX

5

VKX

5

VKX

VKX

xVQX1 xVQX1

step 16

1

xVQX1 xVQX1 xVQX1

2

3

4

5

6

7

8

JRo

HK1d

HKA

HQLb

HQLc

HBl1

HFALA

HKX

1

VKX

VIX

JP

VKX

xCQX

xVQX1 xVQX1 xVQX1

VARA VsARD VsARA

VKX

VKX

VKX

JD1

VKXs

xVQX1 xVQX1 xVQX1

1

2

3

4

5

6

7

8

1

2

3

4

5

1

JQRo2

HAr2

HQRa

HG

HFB>

HfBL1

HALA

HKX

1

JQRo1

HAr3

HG

HQLa

HQLb

HKX

2

VQRe0 JQRe1

HBr1

HQRb

HFGW

HB>

HAL3

HKX

2

VQRe2 JQRe2

HBr2

HQRc

HKX

3

VBRc

VRo

JBr3

HQRd

HFW

HGW

HAL1

HKX

3

VBRe

HAr1

HS

xCQX

4

VARb

VARe

VARb

JAr2

HFW

HW

HQRS

HKXs

4

VARa

VARf

VARc

JAr3

xVQX1

JQX

5

VKX

VKX

VKX

VKX

HfPX

HS

xH

JQX

5

VKX

VKX

VKX

VKX

2

3

4

5

6

7

8

JQRo1

HAr1

HQRd

HFGW

HB>

HBL1

HQLE0

HKX

VRe

JAr3

HQRb

HFW

HGW

HQLA

HAL2

VBRb

VQRo1

JBr2

HFW

HW

HQR1

HGX

VARa

VARd

VARa

JFXA

HW

HQRS

VKX

VKX

VKX

VKX

HPX

xH

2

3

4

5

6

7

8

JG

HK1

HK1

HI

HQLd

HBl2

HALa

HKX

1

VQRo0 JQRo1

6

7

8

HFBL1 HfALA

HKX

HG

HFB>

HfAL3

HKX

HQRd

HFGW

HfAL1

HKX

HQRb

HFW

HGXX

HKX

HFPX

HtSX

HS

xJQX

step 19

step 18

1

JQX

step 15

step 14

1

step 17

1

VKX

1

2

3

4

5

6

7

8

JQLa

HK1

HK1

HQRa

HI

HBl3

HALb

HKX

1

1

2

3

4

5

6

7

8

JAl1

HK1

HK1

HAr1

HKA

HK0d

HALc

HKX

HBr3

HG

HQLa

HQLb

HFAL3

HKX

2

VRe

JRe

HK0d

HKA

HQLb

HQLc

HAl3

HKX

2

VG

JG

HK0

HK0

HI

HBl1

HQLe0

HKX

2

VKA

JAl1

HK0

HK0

HAr1

HK0s

HALa

HKX

3

VBRd

VBRa

JQRo2

HAr2

HQRa

HG

HFAL1

HKX

3

VBRe

VBRb

JQRo1

HAr3

HG

HQLa

HAl1

HKX

3

VBRf

VBRc

JRo

HK1d

HKA

HQLb

HAl2

HKX

3

VK0d

VK0s

JG

HK1

HK1

HI

HAl3

HKX

4

VARb

VQRe0

VARe

JQRe0

HBr1

HQRb HFGOX

HKX

4

VARa

VARa

VARd

JARa

HBr2

HQRc

HGOx

HKX

4

VARb

VARb

VARe

JARb

HBr3

HG

HQLa

HKX

4

VARc

VARa

VARf

JARc

HK0d

HKA

HAl1

HKX

5

VKX

VKX

VKX

VKX

HKX

HTSX

HKXs

5

VKX

VKX

VKX

VKX

HKX

HAr1

HTSX

HKX

5

VKX

VKX

VKX

VKX

HKX

HAr2

Hsubr

HKX

5

VKX

VKX

VKX

VKX

HKX

HAr3

HGOx

HKX

2

VQRe1 JQRe1

HtSX

step 21

step 20 1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

JK0

HK1

HK1

HK0

HK0

HK0

HK0

HKX

1

T

T

T

T

T

T

T

T

2

VK0

JK0

HK0

HK0

HK0

HK0

HK0

HKX

2

T

T

T

T

T

T

T

T

3

VK0

VK0

JKA

HK1

HK1

HKA

HK1

HKX

3

T

T

T

T

T

T

T

T

4

VK0

VK0

VK1

JK0

HK0

HK0

HK0

HKX

4

T

T

T

T

T

T

T

T

5

VKX

VKX

VKX

VKX

HKX

HK1

HKA

HKX

5

T

T

T

T

T

T

T

T

                        !   



   step 0

step 1

step 3

step 2

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

QX

QXT

QXT

QXT

QXT

QXT

QXT

QXX

1

QX

QXT

QXT

QXT

QXT

QXT

QXT

QXX

1

QX

QXT

QXT

ctrl

QXT

QXT

QXT

QXX

1

QX

QXT

L

QLS

D2

QXT

QXT

QXX

2

QXL

Q

Q

Q

Q

Q

Q

QXR

2

QXL

Q

Q

ctrl

Q

Q

Q

QXR

2

QXL

Q

L

QLS

D2

Q

Q

QXR

2

QXL

L

QLS

QL2

D1

D2

Q

QXR

3

QXL

Q

Q

P

Q

Q

Q

QXR

3

QXL

Q

ctrl

D1

ctrl

Q

Q

QXR

3

QXL

ctrl

QLS

D2

QRS

ctrl

Q

QXR

3

ctrl

QLS

QL2

D1

QR2

QRS

ctrl

QXR

4

QXL

Q

Q

Q

Q

Q

Q

QXR

4

QXL

Q

Q

ctrl

Q

Q

Q

QXR

4

QXL

Q

D2

QRS

S

Q

Q

QXR

4

QXL

D2

D1

QR2

QRS

S

Q

QXR

QX

5

QXX

QXB

D2

QRS

S

QXB

QXB

QX

QXX

5

QXB

QXB

QXB

QXB

QXB

QXB

QX

step 4

QXB

QXB

QXB

QX

QXX

5

4

5

6

7

8

1

KXs

QLS

QL2

QL1

QL2

D1

D2

QXX

1

QXR

2

QLS

QL2

QL1

QL2

D1

QR2

QR1

D2

ctrl

3

QL2

QL1

QL2

D1

QR2

QR1

QR2

QRS

S

QXR

4

QL1

QL2

D1

QR2

QR1

QR2

QRS

QXB

QX

5

D2

D1

QR2

QR1

QR2

QRS

S

5

6

7

8

QX

L

QLS

QL2

QL1

D2

QXT

QXX

2

L

QLS

QL2

QL1

D2

QR1

D2

3

QLS

QL2

QL1

D2

QR1

QR2

QRS

4

D2

QL1

D2

QR1

QR2

QRS

5

QXX

D2

QR1

QR2

QRS

S

step 8 2

3

4

5

6

7

8

KX

AR2

QRA

I0

QL1

D2

QR1

QR2

2

AR2

QRA

I0

QL1

D2

QR1

QR2

QR1

3

QRA

I0

QL1

D2

QR1

QR2

QR1

G0

4

I0

QL1

D2

QR1

QR2

QR1

G0

AL1

D2

QR1

QR2

QR1

G0

AL1

1

3

QXB

QXB

step 7 3

4

5

6

7

8

1

2

3

4

5

6

7

8

KX

IX

QL1

QL2

QL1

D2

QR1

D2

1

KX

AR1

I0

QL1

QL2

D1

QR2

QR1

2

IX

QL1

QL2

QL1

D2

QR1

QR2

QR1

2

AR1

I0

QL1

QL2

D1

QR2

QR1

QR2

3

QL1

QL2

QL1

D2

QR1

QR2

QR1

QR2

3

I0

QL1

QL2

D1

QR2

QR1

QR2

QR1

S

4

QL2

QL1

D2

QR1

QR2

QR1

QR2

QRS

4

QL1

QL2

D1

QR2

QR1

QR2

QR1

GX

QX

5

QL1

D2

QR1

QR2

QR1

QR2

QRS

KXs

5

QL2

D1

QR2

QR1

QR2

QR1

GX

KX

step 10 2

3

4

5

6

7

8

KX

AR3

QRB

QRA

I0

D1

QR2

QR1

2

QRA

1

1

step 11

2

KX

3

QRE0 BR1

QRE0 BR1

4

5

6

7

8

1

2

3

4

5

6

7

8

QRB


X

QR1

G0

1

KX

ARA

BR2



FXA

GW

QLA

BR2

AR3

QRB

I0

D1

QR2

QR1

G0

2


X

QR1

G0

QLA

2

ARA



FXA

GW

QLA

3

QRB

QRA

I0

D1

QR2

QR1

G0

QLA

3

BR1

QRB


X

QR1

G0

QLA

QLB

3

BR2



FXA

GW

QLA

QLB

BL1

4

QRA

I0

D1

QR2

QR1

G0

QLA

AL2

4

QRB


X

QR1

G0

QLA

QLB

AL3

4



FXA

GW

QLA

QLB

BL1

QLE0

5

I0

D1

QR2

QR1

G0

QLA

AL2

KX

5


X

QR1

G0

QLA

QLB

AL3

KX

5


FXA

GW

QLA

QLB

BL1

QLE0

KX

3

4

step 13

2

1

QRB

step 14

2

QLB

7

8

1

2

3

4

5

6

7

8

G

FB>

1

KX

fARA

BRd

QRe1

Ro

K1d

KA

QLb

Ar3

G

FB>

D>

2

fARA

BRd

QRe1

Ro

K1d

KA

QLb

FD>

Ar3

G

FB>

D>

BL3

3

BRd

QRe1

Ro

K1d

KA

QLb

FD>

fBL3

Ar3

G

FB>

D>

BL3

ALB

4

QRe1

Ro

K1d

KA

QLb

FD>

fBL3

ALC

G

FB>

D>

BL3

ALB

KX

5

Ro

K1d

KA

QLb

FD>

fBL3

ALC

KX

5

6

7

8

QRo2

Ar2

FGW

B>

1


QRo2

Ar2

FGW

B>

QLC

2

QRo2

Ar2

FGW

B>

QLC

BL2

3

SBRD QRe2 QRo1

KX

ARA SBRD QRe2 QRo1

2

ARB sBRD

3

sBRD


4


QRo2

Ar2

FGW

B>

QLC

BL2

ALA

4

QRe2 QRo1

5

QRo2

Ar2

FGW

B>

QLC

BL2

ALA

KX

5

QRo1

step 16

5

ARA SBRD QRe2 QRo1

Ar3

step 17

step 18

1

2

3

4

5

6

7

8

1

KX

ARc

K0d

KA

Al1

K1

K1

Ar1

I

2

ARc

K0d

KA

Al1

K1

K1

Ar1

Bl3

3

K0d

KA

Al1

K1

K1

Ar1

KA

FALC

4

KA

Al1

K1

K1

Ar1

KA

K0d

KX

5

Al1

K1

K1

Ar1

KA

K0d

ALc

1

2

3

4

5

6

7

8

1

KX

ARb

BRf

G

QLa

K1

K1

QRa

2

ARb

BRf

G

QLa

K1

K1

QRa

3

BRf

G

QLa

K1

K1

QRa

I

4

G

QLa

K1

K1

QRa

I

Bl3

5

QLa

K1

K1

QRa

I

Bl3

FALC

step 15

6

Ar3

4


ARB sBRD

QXB

KX

step 12 KX

ctrl

2

1

1

QXB

1

step 9

1

1

QXB

step 6 3

4

1

QXB

2

3

QL1

QXB

1

2

5

QXB

step 5

1

1

QXX

5

1

2

3

4

5

6

7

1

KX

ARa

BRe

Re

G

K1

K1

I

2

ARa

BRe

Re

G

K1

K1

I

QLd

8

3

BRe

Re

G

K1

K1

I

QLd

FBL3

4

Re

G

K1

K1

I

QLd

FBL3

fALC

5

G

K1

K1

I

QLd

FBL3

fALC

KX

step 19

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

KX

K0

K0

K0

K0

K1

K1

K0

1

T

T

T

T

T

T

T

T

KA

2

K0

K0

K0

K0

K1

K1

K0

K0

2

T

T

T

T

T

T

T

T

K0d

3

K0

K0

K0

K1

K1

K0

K0

K0

3

T

T

T

T

T

T

T

T

ALc

4

K0

K0

K1

K1

K0

K0

K0

K0

4

T

T

T

T

T

T

T

T

KX

5

K0

K1

K1

K0

K0

K0

K0

KX

5

T

T

T

T

T

T

T

T

                    

              5 × 8 !      3,4 

           "#$         %  %   1−bit 

 

          

   

    

          

             



Printing: Mercedes-Druck, Berlin Binding: Stein + Lehmann, Berlin