INDIAN SCHOOL MUSCAT DEPARTMENT OF MATHEMATICS CLASS 12
CONTINUITY AND DIFFERENTIABILITY 1+π₯ 2 β 1βπ₯ 2
1.Find ππ¦ if y = tanβ1 ( ππ₯ 2.Find 3.Find
ππ¦
, if y = tanβ1 (
ππ₯ ππ¦
5. Find
ππ¦ ππ₯ ππ¦ ππ₯
πππ π₯ 1+π πππ₯
2 π₯ +1
, if y = sinβ1 (
ππ₯
4. Find
1+π₯ 2 + 1βπ₯ 2
1+4 π₯
, if y = tanβ1 (
8. Find 9. Find
)
)
2π₯
1+15π₯ 2
)
, y = π πππ₯ π₯ +sin π₯ π₯
6. π₯ π¦ = π π¦βπ₯ .show that dy/dx= 7. Find
)
ππ¦ ππ₯ ππ¦ ππ₯ ππ¦ ππ₯
,π¦ =
2βππππ₯ 1βππππ₯ 2
π₯β3 π₯ 2 +3 3π₯ 2 +4π₯+5
, (π πππ₯)π¦ = π πππ¦ π₯ . , x=a(cosπ +ππ πππ) , y=a(sinπ β πcosπ)
10. x=asin2t (1+cos2t),y=bcos2t(1-cos2t) , Showthat dy/dx at t = 11. x = a(cost+tsint) , y = a(sint β tcost) . Find 1 β π₯ 2 + 1 β π¦ 2 = a(x β y) .P.T
12. If
13. Differentiate tanβ1
2π₯ 1βπ₯ 2
ππ¦ ππ₯
π2π¦ ππ₯ 2
=
π 4
is b/a.
.
1βπ¦ 2 1βπ₯ 2
with respect to sinβ1 (
2π₯
1+π₯ 2
)
14. If y = [πππ(π₯ + π₯ 2 + 1)]2 . Show that (1+x2)d2y/dx2 + x .dy/dx - 2 = 0 15. y =
π πππ₯ + π πππ₯ + π πππ₯ + β¦ β¦ β¦ β¦ . . P.T
ππ¦ ππ₯
=
πΆππ π₯ 2π¦β1
16. Verify Rolles Theorem f(x) = x3-6x2+11x-6 on [1 , -3] 17. Verify Rolles Theorem π 5π
f(x) = ex(sinx-cosx) on [ , 4
4
]
18. Verify MVT f(x) = x (x-1)(x-2) on [0 , 1/2] 19. Discuss the applicability of Rolle's Theorem:
π
f(x) = tanx on [0 , ] 2
W.S (1)
20.If xmyn = (x + y)m+n. Prove that
ππ¦
21. If x16y9 = (x2 + y)17. Prove that
ππ¦
ππ₯
ππ₯
π¦
= . π₯
=
2π¦ π₯
.
22.If y = (π₯ + π₯ 2 + 1)]π , prove that (x2+1) y2 + xy1 β m2y = 0. 1
23.If x = sin ( ππππ¦) , show that (1 β x2) y2 β xy1 β a2y = 0 . π
24. f(x) = π₯ 3 . Show that f is differentiable and find f '(x). 25. y=(ππππ₯)π₯ + π₯ ππππ₯ , find
ππ¦ ππ₯
.
26. Find the values of k ,if the following function 2 π₯ +2 β16
f(x) =
4 π₯ β16
,π₯ β 2
π , ππ π₯ = 2
, ππ ππππ‘πππ’ππ’π ππ‘ π₯ = 2
ππ₯ 2 + π, π₯ > 2 27. Find the value of a and b if ,f(x) = is continuous at x = 2. 2,π₯ = 2 2ππ₯ β π , π₯ < 2 1βπ ππ 3 π₯
,π₯ <
3πππ 2 π₯
π
π, π₯=
28. Find the value of a and b if , f(x) =
2 π(1βπ πππ₯ ) (πβ2π₯)2
π 2
at x = ,π₯ >
2
π₯
π π₯3
π₯ β4 π₯ β4
30. Find the value of a and b if , f(x) =
,π₯ < 0
π ,π₯ = 0 π₯ +ππ₯ 2 β π₯
2
π
π ππ π+1 π₯+π πππ₯
29. Find the value of a , b and c if , f(x) =
π
is continuous
+ π ,π₯ < 4
π + π , π₯ = 4 is continuous + π ,π₯ > 4
at x = 4
π₯β4 π₯β4
31. Find all the points of discontinuity. 2π₯ , π₯ < 0 f(x) = 0 ,0 β€ π₯ β€ 1 4π₯ , π₯ > 1 32. Show that f(x) = π₯ + 3 is continuous but not differentiable at x= -3 33. Find the points where the function f(x) = π₯ , -2β€ π₯ < 3 is not differentiable. 1+ππ₯ β 1βππ₯
34. Find the value of p if , f(x) =
π₯ 2π₯+1 π₯β2
at x = 0
, π₯ >0
, β1 β€ π₯ < 0
,0 β€ π₯ β€ 1
is continuous.