SENIOR CLASS XII MATHEMATICS DIFFERENTIATION

INDIAN SCHOOL MUSCAT DEPARTMENT OF MATHEMATICS CLASS 12 CONTINUITY AND DIFFERENTIABILITY 1+π‘₯ 2 βˆ’ 1βˆ’π‘₯ 2 1.Find 𝑑𝑦 if y ...

0 downloads 193 Views 319KB Size
INDIAN SCHOOL MUSCAT DEPARTMENT OF MATHEMATICS CLASS 12

CONTINUITY AND DIFFERENTIABILITY 1+π‘₯ 2 βˆ’ 1βˆ’π‘₯ 2

1.Find 𝑑𝑦 if y = tanβˆ’1 ( 𝑑π‘₯ 2.Find 3.Find

𝑑𝑦

, if y = tanβˆ’1 (

𝑑π‘₯ 𝑑𝑦

5. Find

𝑑𝑦 𝑑π‘₯ 𝑑𝑦 𝑑π‘₯

π‘π‘œπ‘ π‘₯ 1+𝑠𝑖𝑛π‘₯

2 π‘₯ +1

, if y = sinβˆ’1 (

𝑑π‘₯

4. Find

1+π‘₯ 2 + 1βˆ’π‘₯ 2

1+4 π‘₯

, if y = tanβˆ’1 (

8. Find 9. Find

)

)

2π‘₯

1+15π‘₯ 2

)

, y = 𝑠𝑖𝑛π‘₯ π‘₯ +sin π‘₯ π‘₯

6. π‘₯ 𝑦 = 𝑒 π‘¦βˆ’π‘₯ .show that dy/dx= 7. Find

)

𝑑𝑦 𝑑π‘₯ 𝑑𝑦 𝑑π‘₯ 𝑑𝑦 𝑑π‘₯

,𝑦 =

2βˆ’π‘™π‘œπ‘”π‘₯ 1βˆ’π‘™π‘œπ‘”π‘₯ 2

π‘₯βˆ’3 π‘₯ 2 +3 3π‘₯ 2 +4π‘₯+5

, (𝑠𝑖𝑛π‘₯)𝑦 = 𝑠𝑖𝑛𝑦 π‘₯ . , x=a(cosπœƒ +πœƒπ‘ π‘–π‘›πœƒ) , y=a(sinπœƒ βˆ’ πœƒcosπœƒ)

10. x=asin2t (1+cos2t),y=bcos2t(1-cos2t) , Showthat dy/dx at t = 11. x = a(cost+tsint) , y = a(sint – tcost) . Find 1 βˆ’ π‘₯ 2 + 1 βˆ’ 𝑦 2 = a(x – y) .P.T

12. If

13. Differentiate tanβˆ’1

2π‘₯ 1βˆ’π‘₯ 2

𝑑𝑦 𝑑π‘₯

𝑑2𝑦 𝑑π‘₯ 2

=

πœ‹ 4

is b/a.

.

1βˆ’π‘¦ 2 1βˆ’π‘₯ 2

with respect to sinβˆ’1 (

2π‘₯

1+π‘₯ 2

)

14. If y = [π‘™π‘œπ‘”(π‘₯ + π‘₯ 2 + 1)]2 . Show that (1+x2)d2y/dx2 + x .dy/dx - 2 = 0 15. y =

𝑠𝑖𝑛π‘₯ + 𝑠𝑖𝑛π‘₯ + 𝑠𝑖𝑛π‘₯ + … … … … . . P.T

𝑑𝑦 𝑑π‘₯

=

𝐢𝑂𝑆 π‘₯ 2π‘¦βˆ’1

16. Verify Rolles Theorem f(x) = x3-6x2+11x-6 on [1 , -3] 17. Verify Rolles Theorem πœ‹ 5πœ‹

f(x) = ex(sinx-cosx) on [ , 4

4

]

18. Verify MVT f(x) = x (x-1)(x-2) on [0 , 1/2] 19. Discuss the applicability of Rolle's Theorem:

πœ‹

f(x) = tanx on [0 , ] 2

W.S (1)

20.If xmyn = (x + y)m+n. Prove that

𝑑𝑦

21. If x16y9 = (x2 + y)17. Prove that

𝑑𝑦

𝑑π‘₯

𝑑π‘₯

𝑦

= . π‘₯

=

2𝑦 π‘₯

.

22.If y = (π‘₯ + π‘₯ 2 + 1)]π‘š , prove that (x2+1) y2 + xy1 – m2y = 0. 1

23.If x = sin ( π‘™π‘œπ‘”π‘¦) , show that (1 – x2) y2 – xy1 – a2y = 0 . π‘Ž

24. f(x) = π‘₯ 3 . Show that f is differentiable and find f '(x). 25. y=(π‘™π‘œπ‘”π‘₯)π‘₯ + π‘₯ π‘™π‘œπ‘”π‘₯ , find

𝑑𝑦 𝑑π‘₯

.

26. Find the values of k ,if the following function 2 π‘₯ +2 βˆ’16

f(x) =

4 π‘₯ βˆ’16

,π‘₯ β‰  2

π‘˜ , 𝑖𝑓 π‘₯ = 2

, 𝑖𝑠 π‘π‘œπ‘›π‘‘π‘–π‘›π‘’π‘œπ‘’π‘  π‘Žπ‘‘ π‘₯ = 2

π‘Žπ‘₯ 2 + 𝑏, π‘₯ > 2 27. Find the value of a and b if ,f(x) = is continuous at x = 2. 2,π‘₯ = 2 2π‘Žπ‘₯ βˆ’ 𝑏 , π‘₯ < 2 1βˆ’π‘ π‘–π‘› 3 π‘₯

,π‘₯ <

3π‘π‘œπ‘  2 π‘₯

πœ‹

π‘Ž, π‘₯=

28. Find the value of a and b if , f(x) =

2 𝑏(1βˆ’π‘ π‘–π‘›π‘₯ ) (πœ‹βˆ’2π‘₯)2

πœ‹ 2

at x = ,π‘₯ >

2

π‘₯

𝑏 π‘₯3

π‘₯ βˆ’4 π‘₯ βˆ’4

30. Find the value of a and b if , f(x) =

,π‘₯ < 0

𝑐 ,π‘₯ = 0 π‘₯ +𝑏π‘₯ 2 – π‘₯

2

πœ‹

𝑠𝑖𝑛 π‘Ž+1 π‘₯+𝑠𝑖𝑛π‘₯

29. Find the value of a , b and c if , f(x) =

πœ‹

is continuous

+ π‘Ž ,π‘₯ < 4

π‘Ž + 𝑏 , π‘₯ = 4 is continuous + 𝑏 ,π‘₯ > 4

at x = 4

π‘₯βˆ’4 π‘₯βˆ’4

31. Find all the points of discontinuity. 2π‘₯ , π‘₯ < 0 f(x) = 0 ,0 ≀ π‘₯ ≀ 1 4π‘₯ , π‘₯ > 1 32. Show that f(x) = π‘₯ + 3 is continuous but not differentiable at x= -3 33. Find the points where the function f(x) = π‘₯ , -2≀ π‘₯ < 3 is not differentiable. 1+𝑝π‘₯ βˆ’ 1βˆ’π‘π‘₯

34. Find the value of p if , f(x) =

π‘₯ 2π‘₯+1 π‘₯βˆ’2

at x = 0

, π‘₯ >0

, βˆ’1 ≀ π‘₯ < 0

,0 ≀ π‘₯ ≀ 1

is continuous.